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What is linguistics?
• How do human languages represent meaning? 

• How does the mind/brain process and generate 
language? 

• What are the possible/impossible human 
languages? 

• How do children learn language from a very 
small sample of data?
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Examples adapted from Everaert et al. (TICS 2015)

containing anybody. (This structural configuration is called c(onstituent)-command in the
linguistics literature [31].) When the relationship between not and anybody adheres to this
structural configuration, the sentence is well-formed.

In sentence (3), by contrast, not sequentially precedes anybody, but the triangle dominating not
in Figure 1B fails to also dominate the structure containing anybody. Consequently, the sentence
is not well-formed.

The reader may confirm that the same hierarchical constraint dictates whether the examples in
(4–5) are well-formed or not, where we have depicted the hierarchical sentence structure in
terms of conventional labeled brackets:

(4) [S1 [NP The book [S2 I bought]S2]NP did not [VP appeal to anyone]VP]S1
(5) *[S1 [NP The book [S2 I did not buy]S2]NP [VP appealed to anyone]VP]S1

Only in example (4) does the hierarchical structure containing not (corresponding to the sentence
The book I bought did not appeal to anyone) also immediately dominate the NPI anybody. In (5)
not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
and (5) is not, exactly the predicted result if the hierarchical constraint is correct.

Even more strikingly, the same constraint appears to hold across languages and in many other
syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump

(A) (B)

X X

X X X X

The book  X X X The book           X   appealed to anybody
did not

that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.
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Generalization: not must “structurally precede” anybody
- the psychological reality of structural sensitivty  

is not empirically controversial  
- many different theories of the details of structure 

- hypothesis: kids learn language easily because they  
don’t consider many “obvious” structurally insensitive 
hypotheses 
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• Recurrent neural networks are incredibly powerful models 
of sequences (e.g., of words) 

• In fact, RNNs are Turing complete!  
(Siegelmann, 1995) 

• But do they make good generalizations from finite 
samples of data? 

• What inductive biases do they have? 

• What assumptions about representations do models 
that use them make?

Recurrent neural networks 
A good model of language?
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• Understanding the biases of neural networks is tricky 

• We have enough trouble understanding the representations they learn in specific 
cases, much less general cases! 

• But, there is lots of evidence RNNs prefer sequential recency 

• Evidence 1: Gradients become attenuated across time 

• Analysis; experiments with synthetic datasets 
(yes, LSTMs help but they have limits) 

• Evidence 2: Training regimes like reversing sequences in seq2seq learning 

• Evidence 3: Modeling enhancements to use attention (direct connections back in 
remote time) 

• Chomsky (to crudely paraphrase 60 years of work): 
sequential recency is not the right bias for modeling human language.

Recurrent neural networks 
Inductive bias
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representation 

• Recurrent neural network grammars and parsing 

• Word representations by looking inside words  
(words have structure too!) 

• Analysis of neural networks with linguistic concepts
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Representing a sentence
Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive  
or negative sentiment.



Representing a sentence
Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive  
or negative sentiment.

Why might this sentence pose a problem for interpretation?



Representing a sentence

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xic =
1

|x|
X

i

xi

Bag of words:

this film is hardly a treat



Representing a sentence

Recurrent neural network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

h6h5h4h3h2h1 c = h6

this film is hardly a treat



How do languages express 
meaning?

• Principle of compositionality: the meaning of a complex 
expression is determined by the meanings of its constituent 
expressions and the rules that combine them. 

• Syntax and parsing 

• Syntax is the study of how words fit together to form 
phrases and ultimately sentences 

• We can use syntactic parsing to decompose sentences 
into constituent expressions and rules that were used to 
construct them out of more primitive expressions (and 
ultimately individual words)
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Socher et al. (ICML 2011), et passim
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Representing Sentences
• Bag of words/n-grams 

• Convolutional neural network 

• Recurrent neural network 

• Recursive neural network 

• In all of these, we can train by backpropagating 
through the “composition function”



Stanford Sentiment Treebank
very positive 

positive 
neutral 
negative 
very negative

Socher et al. (2013, EMNLP)



Internal Supervision



Some Results
all “not good” “not terrible”

Bigram Naive 
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RecNN 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Outer product` r
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Predictions by RNTN variant of RecNN.

Some Predictions



Many Extensions
• Various cell definitions, e.g., (matrix, vector) pairs, higher order tensors 

• Improved gradient dynamics using tree cells defined in terms of LSTM 
updates with gating instead of RNN. Exercise: generalize the definition 
of a sequential LSTM to the tree case. Check the paper. 

• n-ary children 

• “Inside outside” networks provide an analogue to bidirectional RNNs 
(lecture from a few weeks ago) 

• Dependency syntax rather than “phrase structure” syntax 

• Applications to programming languages, visual scene analysis— 
anywhere you can get trees, you can apply RecNNs



Recursive vs. Recurrent
• Advantages 

• Meaning decomposes roughly according to the syntax of a sentence (and we 
have good tools for obtaining syntax trees for sentences) — better inductive 
bias 

• Shorter gradient paths on average (log2(n) in the best case) 

• Internal supervision of the node representations (“auxiliary objectives”) is 
sometimes available 

• Disadvantages 

• We need parse trees 

• Trees tend to be right-branching—gradients still have a long way to go! 

• More difficult to batch than RNNs



Topics
• Recursive neural networks for sentence 

representation 

• Recurrent neural network grammars and parsing 

• Word representations by looking inside words  
(words have structure too!) 

• Analysis of neural networks with linguistic concepts



Where do trees come from?



• Generate symbols sequentially using an RNN 

• Add some control symbols to rewrite the history 
occasionally 

• Occasionally compress a sequence into a constituent 

• RNN predicts next terminal/control symbol based on the 
history of compressed elements and non-compressed 
terminals 

• This is a top-down, left-to-right generation of a 
tree+sequence

An alternative to RNN LMs 
Recurrent Neural Net Grammars
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The hungry cat meows loudly

Example derivation 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• Valid (tree, string) pairs are in bijection to valid sequences of 
actions (specifically, the DFS, left-to-right traversal of the 
trees) 

• Every stack configuration perfectly encodes the complete 
history of actions. 

• Therefore, the probability decomposition is justified by the 
chain rule, i.e.

(chain rule)

(prop 2)

p(x,y) = p(actions(x,y))

p(actions(x,y)) =
Y

i

p(ai | a<i)

=
Y

i

p(ai | stack(a<i))

(prop 1)

Some things you can (easily) prove 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h1 h2 h3 h4

2. arbitrarily complex trees

2. Arbitrarily complex trees → recursive neural nets
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Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai | )

1. Unbounded depth → recurrent neural nets
2. Arbitrarily complex trees → recursive neural nets

⇠REDUCE

(S (NP The hungry cat) (VP meows)p(ai+1 | )
3. limited updates 

3. Limited updates to state → stack RNNs



• Augment RNN with a stack pointer 

• Two constant-time operations 

• Push - read input, add to top of stack 

• Pop - move stack pointer back 

• A summary of stack contents is obtained by 
accessing the output of the RNN at location of the 
stack pointer

Stack RNNs 
Operation
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Stack RNNs 
Operation



• What inductive biases do RNNGs exhibit? 

• If we accept the following two propositions 

• RNNs have recency biases 

• Syntactic composition learns to represent trees by their heads 

• Then we can say that they have a bias for syntactic recency rather 
than sequential recency

• Not a perfect model, but maybe a better model

RNNGs 
Inductive bias?

(S (NP The talk (SBAR I did not give)) (VP appealed (PP to …

“talk”z }| {



• Generative 

• Jointly model sentence x and its tree y 

• Trained using gold standard trees (here: from a tree bank) to minimize 
cross-entropy 

• We call this joint distribution p(x,y) 

• Discriminative 

• Given a sentence x, predict the sequence to of actions y necessary to 
build its parse tree 

• Instead of GEN, use SHIFT 

• We call this conditional distribution q(y | x)

Parameter estimation 

To parse (find a tree for x): we need to compute
y

⇤
= arg max

y2Y
x

p(y | x)

= arg max

y2Y
x

p(x,y)

p(x)

= arg max

y2Y
x

p(x,y)

def. conditional prob.

denominator is constant



• Generative 

• Jointly model sentence x and its tree y 

• Trained using gold standard trees (here: from a tree bank) to minimize 
cross-entropy 

• We call this joint distribution p(x,y) 

• Discriminative 

• Given a sentence x, predict the sequence to of actions y necessary to 
build its parse tree - the full sentence x is observable 

• Instead of GEN, use SHIFT 

• We call this conditional distribution q(y | x)

Parameter estimation 

To parse: simply use beam search to find the best sequence.
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Perplexity

5-gram IKN 169.3

LSTM + Dropout 113.4

Generative (approx.) 102.4

English Language Modeling

p(x) =
X

y2Y
x

p(x,y)



• Build trees by pushing words (“shift”) onto a stack and 
combing elements at the top of the stack into a 
syntactic constituent (“reduce”) 

• Given current stack and buffer of unprocessed 
words, what action should the algorithm take? 

• Widely used 

• Good accuracy  

• O(n) runtime [much faster than other parsing algos]

Transition-based parsing 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Some Results

Dyer et al. (2015, ACL)

Accuracy

Feed forward 
NN 93.1

Stack LSTM 91.8



Topics
• Recursive neural networks for sentence 

representation 

• Recurrent neural network grammars and parsing 

• Word representations by looking inside words  
(words have structure too!) 

• Analysis of neural networks with linguistic concepts
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Turkish

0

0.58

1.15

1.73

2.3

PureC C CM CW CMW

Finnish

0

0.68

1.35

2.03

2.7

PureC C CM CW CMW

Language modeling results

Lower is better.
Columns: 
  RNN predicts language as a sequences of characters  
  Compositional character model only  
  Character+morpheme model 
  Character+word embedding model  
  Character+morpheme+word embedding model



Topics
• Recursive neural networks for sentence 

representation 

• Recurrent neural network grammars and parsing 

• Word representations by looking inside words  
(words have structure too!) 
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• This is a great set up! 

• To generate training data, we just need to be 
able to tag present tense verbs in a corpus 

• Authors used ~1.4M sentences from Wikipedia 

• To analyze, we might want a bit more of 
information about the sentences to know when 
the model gets it right and when it gets it wrong

Experiment 1: Can a RNN 
learn syntax?
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keys cabinet → PL



Experimental Variants

Training signal Evaluation Task

The keys to the cabinet {SINGULAR, 
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More Results



Summary
• RNN Language Models are not learning the correct generalizations 

about syntax 

• Open questions 

• If RNNs are trained jointly to predict “singular/plural” and the 
next word, would they do better? [Auxiliary objective] 

• Would RNNGs do a better job on this task? 

• Other experimental variants 

• Is there a “simple” function                                      ? 

• Is there a single dimension corresponding to “number”?

f(ht) ! {sg, pl}



Linguistics in DL
• Two benefits: 

• Help us design better models based on 
knowledge about nature 

• Help us interrogate our models to see if they 
behave like they should 

• Any questions?


