Linguistic Knowledge in Neural Networks

Chris Dyer

Carnegie Mellon University

What is linguistics?

- How do human languages represent meaning?
- How does the mind/brain process and generate language?
- What are the possible/impossible human languages?
- How do children learn language from a very small sample of data?

An important insight **Sentences are hierarchical**

(1) a. The talk I gave did **not** appeal to **anybody**.

An important insight Sentences are hierarchical

(1) a. The talk I gave did **not** appeal to **anybody**.
 b. *The talk I gave appealed to **anybody**.

An important insight Sentences are hierarchical

(1) a. The talk I gave did **not** appeal to **anybody**.
 b. *The talk I gave appealed to **anybody**.

An important insight Sentences are hierarchical

(1) a. The talk I gave did **not** appeal to **anybody**.
b. *The talk I gave appealed to **anybody**.

Generalization hypothesis: not must come before anybody

An important insight **Sentences are hierarchical**

(1) a. The talk I gave did **not** appeal to **anybody**.
b. *The talk I gave appealed to **anybody**.

Generalization hypothesis: not must come before anybody

(2) *The talk I did **not** give appealed to **anybody**.

Language is hierarchical

Language is hierarchical

Generalization: not must "structurally precede" anybody

Language is hierarchical

Generalization: not must "structurally precede" anybody

- the psychological reality of structural sensitivty is not empirically controversial
 - many different theories of the *details* of structure
- hypothesis: kids learn language easily because they don't consider many "obvious" structurally insensitive hypotheses
- Examples adapted from Everaert et al. (TICS 2015)

Recurrent neural networks **A good model of language?**

- Recurrent neural networks are incredibly powerful models of sequences (e.g., of words)
 - In fact, RNNs are Turing complete! (Siegelmann, 1995)

Recurrent neural networks **A good model of language?**

- Recurrent neural networks are incredibly powerful models of sequences (e.g., of words)
 - In fact, RNNs are Turing complete! (Siegelmann, 1995)
- But do they make good generalizations from finite samples of data?
 - What inductive biases do they have?
 - What assumptions about representations do models that use them make?

Recurrent neural networks Inductive bias

- Understanding the biases of neural networks is tricky
 - We have enough trouble understanding the representations they learn in specific cases, much less general cases!

Recurrent neural networks Inductive bias

- Understanding the biases of neural networks is tricky
 - We have enough trouble understanding the representations they learn in specific cases, much less general cases!
- But, there is lots of evidence RNNs prefer sequential recency
 - Evidence 1: Gradients become attenuated across time
 - Analysis; experiments with synthetic datasets (yes, LSTMs help but they have limits)
 - Evidence 2: Training regimes like reversing sequences in seq2seq learning
 - Evidence 3: Modeling enhancements to use attention (direct connections back in remote time)

Recurrent neural networks Inductive bias

- Understanding the biases of neural networks is tricky
 - We have enough trouble understanding the representations they learn in specific cases, much less general cases!
- But, there is lots of evidence RNNs prefer sequential recency
 - Evidence 1: Gradients become attenuated across time
 - Analysis; experiments with synthetic datasets (yes, LSTMs help but they have limits)
 - Evidence 2: Training regimes like reversing sequences in seq2seq learning
 - Evidence 3: Modeling enhancements to use attention (direct connections back in remote time)
- Chomsky (to crudely paraphrase 60 years of work): sequential recency is not the right bias for effective learning of human language.

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive or negative sentiment.

Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive or negative sentiment.

Why might this sentence pose a problem for interpretation?

Bag of words:

Recurrent neural network

How do languages express meaning?

- Principle of compositionality: the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules that combine them.
- Syntax and parsing
 - Syntax is the study of how words fit together to form phrases and ultimately sentences
 - We can use **syntactic parsing** to decompose sentences into constituent expressions and rules that were used to construct them out of more primitive expressions (and ultimately individual words)

Syntax as Trees

Syntax as Trees

Syntax as Trees

Recursive Neural Network

"Syntactic untying"

"Syntactic untying"

Representing Sentences

- Bag of words/n-grams
- Convolutional neural network
- Recurrent neural network
- Recursive neural network
- In all of these, we can train by backpropagating through the "composition function"
Stanford Sentiment Treebank

Socher et al. (2013, EMNLP)

Internal Supervision

Some Results

$$\begin{aligned} \mathbf{h} &= \tanh\left(\mathbf{V}\mathrm{vec}([\boldsymbol{\ell};\mathbf{r}]\otimes[\boldsymbol{\ell};\mathbf{r}]) + \mathbf{W}[\boldsymbol{\ell};\mathbf{r}] + \mathbf{b}\right) \\ \uparrow \\ & \text{Outer product} \end{aligned}$$

Some Results

	all	"not good"	"not terrible"
Bigram Naive Bayes	83.1	19.0	27.3
RecNN (RNTN form)	85.4	71.4	81.8

$$\begin{aligned} \mathbf{h} &= \tanh\left(\mathbf{V}\mathrm{vec}([\boldsymbol{\ell};\mathbf{r}]\otimes[\boldsymbol{\ell};\mathbf{r}]) + \mathbf{W}[\boldsymbol{\ell};\mathbf{r}] + \mathbf{b}\right) \\ \uparrow \\ & \text{Outer product} \end{aligned}$$

Some Predictions

Predictions by RNTN variant of RecNN.

Many Extensions

- Various cell definitions, e.g., (matrix, vector) pairs, higher order tensors
- Improved gradient dynamics using tree cells defined in terms of LSTM updates with gating instead of RNN. Exercise: generalize the definition of a sequential LSTM to the tree case. Check the paper.
- *n*-ary children
- "Inside outside" networks provide an analogue to bidirectional RNNs (lecture from a few weeks ago)
- Dependency syntax rather than "phrase structure" syntax
- Applications to programming languages, visual scene analysis anywhere you can get trees, you can apply RecNNs

Recursive vs. Recurrent

Advantages

- Meaning decomposes roughly according to the syntax of a sentence (and we have good tools for obtaining syntax trees for sentences) — better inductive bias
- Shorter gradient paths on average (log₂(n) in the best case)
- Internal supervision of the node representations ("auxiliary objectives") is sometimes available

• Disadvantages

- We need parse trees
- Trees tend to be right-branching—gradients still have a long way to go!
- More difficult to batch than RNNs

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

Where do trees come from?

An alternative to RNN LMs Recurrent Neural Net Grammars

Generate **symbols** sequentially using an **RNN**

An alternative to RNN LMs Recurrent Neural Net Grammars

- Generate **symbols** sequentially using an **RNN**
- Add some control symbols to rewrite the history occasionally
 - Occasionally **compress** a sequence into a **constituent**
 - RNN predicts next terminal/control symbol based on the history of compressed elements and non-compressed terminals

An alternative to RNN LMs Recurrent Neural Net Grammars

- Generate **symbols** sequentially using an **RNN**
- Add some control symbols to rewrite the history occasionally
 - Occasionally **compress** a sequence into a **constituent**
 - RNN predicts next terminal/control symbol based on the history of compressed elements and non-compressed terminals
- This is a top-down, left-to-right generation of a tree+sequence

Example derivation

The hungry cat meows loudly

stack	action	probability

- - J
)

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S		

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(NT(NP) \mid (S)$

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(nt(NP) \mid (S)$
(S (NP		

sta	ack	action	probability
			$p(NT(S) \mid TOP)$
	(S	NT(NP)	$p(\text{NT}(\text{NP}) \mid (\text{S})$
(S	(NP	GEN(The)	$p(\text{gen}(The) \mid (S, (NP)$

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(\text{NT}(\text{NP}) \mid (\text{S})$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The		

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(nt(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, The))$

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(NT(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP <i>The hu</i> rgry	GEN(hungry)	p(GEN(hungry) (S, (NP, The)

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(nt(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, NP))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(NT(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{gen}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, (NP, (NP))))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)
(S (NP The hungry cat		

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(NT(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{gen}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, NP))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)
(S (NP The hungry cat	REDUCE	$p(\text{REDUCE} \mid \ldots)$

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(NT(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, TL)))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)
(S (NP The hungry cat	REDUCE	$p(\text{REDUCE} \mid \ldots)$
(S (NP The hungry cat)		

Compress "The hungry cat" into a single composite symbol

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(nt(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, NP))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)
(S (NP The hungry cat	REDUCE	$p(\text{REDUCE} \mid \ldots)$
(S (NP <i>The hungry cat</i>)		

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(nt(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, $
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)
(S (NP The hungry cat	REDUCE	$p(\text{REDUCE} \mid \ldots)$
(S (NP The hungry cat)	NT(VP)	p(NT(VP) (S, (NP The hungry cat)))

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(nt(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, (NP, (NP, (NP)))))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots)$ The)
(S (NP The hungry cat	REDUCE	$p(\text{REDUCE} \mid \ldots)$
(S (NP The hungry cat)	NT(VP)	p(NT(VP) (S, (ND T) (S, (ND T))))
(S (NP <i>The hungry cat</i>) (VP		(NP Ine nungry cat)

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(NT(NP) \mid (S)$
(S (NP	GEN(The)	$p(\text{gen}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, NP))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots) \qquad The)$
(S (NP The hungry cat	REDUCE	$p(\text{REDUCE} \mid \ldots)$
(S (NP The hungry cat)	NT(VP)	p(NT(VP) (S, (ND T) (S, (ND T))))
(S (NP <i>The hungry cat</i>) (VP	GEN(meows)	(NP The hungry cat)

stack	action	probability
	NT(S)	$p(nt(S) \mid top)$
(S	NT(NP)	$p(\text{NT}(\text{NP}) \mid (\text{S})$
(S (NP	GEN(The)	$p(\text{GEN}(The) \mid (S, (NP)$
(S (NP The	GEN(hungry)	$p(\text{GEN}(hungry) \mid (S, (NP, NP))$
(S (NP The hungry	GEN(cat)	$p(\text{GEN}(cat) \mid \ldots) \qquad The)$
(S (NP The hungry cat	REDUCE	$p(ext{REDUCE} \mid \ldots)$
(S (NP The hungry cat)	NT(VP)	$p(\mathrm{NT}(\mathrm{VP}) \mid (\mathrm{S},$
(S (NP The hungry cat) (VP	GEN(meows)	(NP The hungry cat)
(S (NP The hungry cat) (VP meows	REDUCE	
(S (NP The hungry cat) (VP meows)	GEN(.)	
(S (NP The hungry cat) (VP meows).	REDUCE	
(S (NP The hungry cat) (VP meows) .)		

Some things you can (easily) prove

- Valid (tree, string) pairs are in bijection to valid sequences of actions (specifically, the DFS, left-to-right traversal of the trees)
- Every stack configuration perfectly encodes the complete history of actions.
- Therefore, the probability decomposition is justified by the chain rule, i.e.

$$p(\mathbf{x}, \mathbf{y}) = p(actions(\mathbf{x}, \mathbf{y})) \quad (\text{prop 1})$$

$$p(actions(\mathbf{x}, \mathbf{y})) = \prod_{i} p(a_i \mid \mathbf{a}_{< i}) \quad (\text{chain rule})$$

$$= \prod_{i} p(a_i \mid stack(\mathbf{a}_{< i})) \quad (\text{prop 2})$$

Modeling the next action

Modeling the next action

1. unbounded depth

Modeling the next action

1. unbounded depth

1. Unbounded depth \rightarrow recurrent neural nets

1. Unbounded depth \rightarrow recurrent neural nets

Need representation for: (NP The hungry cat)

Syntactic composition **Recursion**

Need representation for: (NP The hungry cat)

(NP The (ADJP very hungry) cat)

Syntactic composition **Recursion**

$p(a_i | (S (NP The hungry cat) (VP meows) \sim REDUCE$ $p(a_{i+1} | (S (NP The hungry cat) (VP meows))$ S. limite UP tes

- 1. Unbounded depth \rightarrow recurrent neural nets
- 2. Arbitrarily complex trees \rightarrow recursive neural nets
- 3. Limited updates to state \rightarrow stack RNNs

Stack RNNs Operation

- Augment RNN with a stack pointer
- Two constant-time operations
 - Push read input, add to top of stack
 - **Pop** move stack pointer back
- A summary of stack contents is obtained by accessing the output of the RNN at location of the stack pointer

Stack RNNs **Operation**

Stack RNNs Operation

POP

Stack RNNs **Operation**

Stack RNNs **Operation**

Stack RNNs Operation

Stack RNNs **Operation**

Stack RNNs Operation

Stack RNNs Operation

RNNGs Inductive bias?

- What inductive biases do RNNGs exhibit?
- If we accept the following two propositions
 - RNNs have recency biases
 - Syntactic composition learns to represent trees by their heads
- Then we can say that they have a bias for syntactic recency rather than sequential recency
- Not a perfect model, but maybe a **better** model

"talk" (NP The talk (SBAR I did not give)) (VP appealed (PP to ...

Parameter estimation

Generative

- Jointly model sentence **x** and its tree **y**
- Trained using gold standard trees (here: from a tree bank) to minimize cross-entropy
- We call this joint distribution *p*(**x**,**y**)

To parse (find a tree for **x**): we need to compute

$$\begin{split} \boldsymbol{y}^* &= \arg \max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{y} \mid \boldsymbol{x}) \\ &= \arg \max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} \frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})} \quad \text{def. conditional prob.} \\ &= \arg \max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{x}, \boldsymbol{y}) \quad \text{denominator is constant} \end{split}$$

Parameter estimation

Generative

- Jointly model sentence **x** and its tree **y**
- Trained using gold standard trees (here: from a tree bank) to minimize cross-entropy
- We call this joint distribution p(x,y)

Discriminative

- Given a sentence x, predict the sequence to of actions y necessary to build its parse tree - the full sentence x is observable
- Instead of **GEN**, use **SHIFT**
- We call this conditional distribution q(y | x)

To parse: simply use beam search to find the best sequence.

English PTB (Parsing)

	Туре	F1
Petrov and Klein (2007)	Gen	90.1
Shindo et al (2012) Single model	Gen	91.1
Vinyals et al (2015) PTB only	Disc	90.5
Shindo et al (2012) Ensemble	Gen	92.4
Vinyals et al (2015) Semisupervised	Disc+SemiS up	92.8
<i>Discriminative</i> PTB only	Disc	91.7
<i>Generative</i> PTB only	Gen	93.6

English PTB (Parsing)

	Туре	F1	
Petrov and Klein (2007)	Gen	90.1	
Shindo et al (2012) Single model	Gen	91.1	
Vinyals et al (2015) PTB only	Disc	90.5	
Shindo et al (2012) Ensemble	Gen	92.4	
Vinyals et al (2015) Semisupervised	Disc+SemiS up	92.8	
<i>Discriminative</i> PTB only	Disc	91.7	
<i>Generative</i> PTB only	Gen	93.6	

English PTB (Parsing)

	Туре	F1	
Petrov and Klein (2007)	Gen	90.1	
Shindo et al (2012) Single model	Gen	91.1	
Vinyals et al (2015) PTB only	Disc	90.5	
Shindo et al (2012) Ensemble	Gen	92.4	
Vinyals et al (2015) Semisupervised	Disc+SemiS up	92.8	
<i>Discriminative</i> PTB only	Disc	91.7	
<i>Generative</i> PTB only	Gen	93.6	

English Language Modeling

	Perplexity
5-gram IKN	169.3
LSTM + Dropout	113.4
Generative (approx.)	102.4

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{x}, \boldsymbol{y})$$

Transition-based parsing

- Build trees by pushing words ("shift") onto a stack and combing elements at the top of the stack into a syntactic constituent ("reduce")
- Given current stack and buffer of unprocessed words, what action should the algorithm take?
- Widely used
 - Good accuracy
 - *O*(*n*) runtime [much faster than other parsing algos]

Stack	Buffer	Action
	I saw her duck ROOT	
Stack	Buffer	Action
-------	---------------------	--------
	I saw her duck ROOT	SHIFT

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	

Stack	Buffer	Action
	Isawherduck воот sawherduck воот	SHIFT SHIFT

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
1	saw her duck ROOT	SHIFT
I saw	her duck ROOT	

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw		

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck ROOT	

Buffer	Action
I saw her duck ROOT	SHIFT
saw her duck ROOT	SHIFT
her duck ROOT	REDUCE-L
her duck ROOT	SHIFT
	I saw her duck nor saw her duck nor her duck nor

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck ROOT	SHIFT
Ísaw her	duck ROOT	

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck ROOT	SHIFT
Í saw her	duck ROOT	SHIFT

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck ROOT	SHIFT
Ísaw her	duck ROOT	SHIFT
isaw her duck	ROOT	REDUCE-L

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
1	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck воот	SHIFT
Ísaw her	duck ROOT	SHIFT
isaw her duck	ROOT	REDUCE-L
Í saw her duck	ROOT	

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck ROOT	SHIFT
Ísaw her	duck ROOT	SHIFT
isaw her duck	ROOT	REDUCE-L
Í saw her duck	ROOT	REDUCE-R

Buffer	Action
I saw her duck ROOT	SHIFT
saw her duck ROOT	SHIFT
her duck ROOT	REDUCE-L
her duck ROOT	SHIFT
duck ROOT	SHIFT
ROOT	REDUCE-L
ROOT	REDUCE-R
	BufferIsawherduckRootsawherduckRootherduckRootherduckRootduckRoot

Stack	Buffer	Action
	I saw her duck ROOT	SHIFT
	saw her duck ROOT	SHIFT
I saw	her duck ROOT	REDUCE-L
Ísaw	her duck ROOT	SHIFT
Ísaw her	duck ROOT	SHIFT
Saw her duck	ROOT	REDUCE-L
Í saw her duck	ROOT	REDUCE-R
I saw her duck	ROOT	SHIFT
Saw her duck ROOT		REDUCE-R
I saw her duck ROOT		

Some Results

	Accuracy
Feed forward NN	93.1
Stack LSTM	91.8

Dyer et al. (2015, ACL)

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

ARBITRARINESS (de Saussure, 1916)

Is it reasonable to compose characters into "meanings"?

ARBITRARINESS (de Saussure, 1916)

OPPORTUNITY

ARBITRARINESS (de Saussure, 1916)

OPPORTUNITY

cool | coooool | cooooooool 💟

ARBITRARINESS (de Saussure, 1916)

OPPORTUNITY

cool I coooool I coooooool 💟

ARBITRARINESS (de Saussure, 1916)

OPPORTUNITY

cool | coooool | cooooooool 💟

1. Normal word vector

• Normally we model $p(w_t \mid h_t)$ directly.

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

Normally we model p(w_t | h_t) directly.
Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_m p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

Putting it all together

73

Language modeling results

Lower is better.

Columns:

RNN predicts language as a sequences of characters

Compositional character model only

Character+morpheme model

Character+word embedding model

Character+morpheme+word embedding model

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

What do Neural Nets Learn about Linguistics?

What do Neural Nets Learn about Linguistics?

Linzen, Dupoux, and Goldberg (2017, TACL)
What do Neural Nets Learn about Linguistics?

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN learn syntax?

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN learn syntax?

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN learn syntax?

- This is a great set up!
 - To generate training data, we just need to be able to tag present tense verbs in a corpus
 - Authors used ~1.4M sentences from Wikipedia
 - To analyze, we might want a bit more of information about the sentences to know when the model gets it right and when it gets it wrong

Experiment 1 Results

Experiment 1 Results

Experiment 1 Results

Experimental Variants

	Training signal	Evaluation Task
The keys to the cabinet	{SINGULAR, PLURAL }	P(PL) > P(SG)?
The keys to the cabinet is/are	{SINGULAR, PLURAL }	P(PL) > P(SG)?
The keys to the cabinet are here	{ GRAMMATICAL , UNGRAMMATICAL}	P(GRAMMATICAL) > P(UNGRAMMATICAL)?
The keys to the cabinet	{ are , is, cat, dog, the,}	P(are) > P(is)?

Experimental Variants

	Training signal	Evaluation Task
The keys to the cabinet	{SINGULAR, PLURAL }	P(PL) > P(SG)?
The keys to the cabinet is/are	{SINGULAR, PLURAL }	P(PL) > P(SG)?
The keys to the cabinet are here	{ GRAMMATICAL , UNGRAMMATICAL}	P(GRAMMATICAL) > P(UNGRAMMATICAL)?
The keys to the cabinet	{ are , is, cat, dog, the,}	P(are) > P(is)?

More Results

Error rate

Summary

- RNN Language Models are not learning the correct generalizations about syntax
- Open questions
 - If RNNs are trained jointly to predict "singular/plural" and the next word, would they do better? [Auxiliary objective]
 - Would RNNGs do a better job on this task?
- Other experimental variants
 - Is there a "simple" function $f(\mathbf{h}_t) \rightarrow \{ SG, PL \}$?
 - Is there a single dimension corresponding to "number"?

Linguistics in DL

- Two benefits:
 - Help us design better models based on knowledge about nature
 - Help us interrogate our models to see if they behave like they should
- Any questions?