
Linguistic Knowledge
in Neural Networks

Chris Dyer

What is linguistics?
• How do human languages represent meaning?

• How does the mind/brain process and generate
language?

• What are the possible/impossible human
languages?

• How do children learn language from a very
small sample of data?

(1) a. The talk I gave did not appeal to anybody.

An important insight 
Sentences are hierarchical

Examples adapted from Everaert et al. (TICS 2015)

(1) a. The talk I gave did not appeal to anybody.
b. *The talk I gave appealed to anybody.

An important insight 
Sentences are hierarchical

Examples adapted from Everaert et al. (TICS 2015)

(1) a. The talk I gave did not appeal to anybody.
b. *The talk I gave appealed to anybody.

An important insight 
Sentences are hierarchical

NPI

Examples adapted from Everaert et al. (TICS 2015)

(1) a. The talk I gave did not appeal to anybody.
b. *The talk I gave appealed to anybody.

Generalization hypothesis: not must come before anybody

An important insight 
Sentences are hierarchical

NPI

Examples adapted from Everaert et al. (TICS 2015)

(1) a. The talk I gave did not appeal to anybody.
b. *The talk I gave appealed to anybody.

Generalization hypothesis: not must come before anybody

(2) *The talk I did not give appealed to anybody.

An important insight 
Sentences are hierarchical

NPI

Examples adapted from Everaert et al. (TICS 2015)

Examples adapted from Everaert et al. (TICS 2015)

containing anybody. (This structural configuration is called c(onstituent)-command in the
linguistics literature [31].) When the relationship between not and anybody adheres to this
structural configuration, the sentence is well-formed.

In sentence (3), by contrast, not sequentially precedes anybody, but the triangle dominating not
in Figure 1B fails to also dominate the structure containing anybody. Consequently, the sentence
is not well-formed.

The reader may confirm that the same hierarchical constraint dictates whether the examples in
(4–5) are well-formed or not, where we have depicted the hierarchical sentence structure in
terms of conventional labeled brackets:

(4) [S1 [NP The book [S2 I bought]S2]NP did not [VP appeal to anyone]VP]S1
(5) *[S1 [NP The book [S2 I did not buy]S2]NP [VP appealed to anyone]VP]S1

Only in example (4) does the hierarchical structure containing not (corresponding to the sentence
The book I bought did not appeal to anyone) also immediately dominate the NPI anybody. In (5)
not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
and (5) is not, exactly the predicted result if the hierarchical constraint is correct.

Even more strikingly, the same constraint appears to hold across languages and in many other
syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump

(A) (B)

X X

X X X X

The book X X X The book X appealed to anybody
did not

that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.

734 Trends in Cognitive Sciences, December 2015, Vol. 19, No. 12

Language is hierarchical

The talk

I gave
did not

appeal to anybody

appealed to anybodyThe talk

I did not give

Examples adapted from Everaert et al. (TICS 2015)

containing anybody. (This structural configuration is called c(onstituent)-command in the
linguistics literature [31].) When the relationship between not and anybody adheres to this
structural configuration, the sentence is well-formed.

In sentence (3), by contrast, not sequentially precedes anybody, but the triangle dominating not
in Figure 1B fails to also dominate the structure containing anybody. Consequently, the sentence
is not well-formed.

The reader may confirm that the same hierarchical constraint dictates whether the examples in
(4–5) are well-formed or not, where we have depicted the hierarchical sentence structure in
terms of conventional labeled brackets:

(4) [S1 [NP The book [S2 I bought]S2]NP did not [VP appeal to anyone]VP]S1
(5) *[S1 [NP The book [S2 I did not buy]S2]NP [VP appealed to anyone]VP]S1

Only in example (4) does the hierarchical structure containing not (corresponding to the sentence
The book I bought did not appeal to anyone) also immediately dominate the NPI anybody. In (5)
not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
and (5) is not, exactly the predicted result if the hierarchical constraint is correct.

Even more strikingly, the same constraint appears to hold across languages and in many other
syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump

(A) (B)

X X

X X X X

The book X X X The book X appealed to anybody
did not

that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.

734 Trends in Cognitive Sciences, December 2015, Vol. 19, No. 12

Generalization: not must “structurally precede” anybody

Language is hierarchical

The talk

I gave
did not

appeal to anybody

appealed to anybodyThe talk

I did not give

Examples adapted from Everaert et al. (TICS 2015)

containing anybody. (This structural configuration is called c(onstituent)-command in the
linguistics literature [31].) When the relationship between not and anybody adheres to this
structural configuration, the sentence is well-formed.

In sentence (3), by contrast, not sequentially precedes anybody, but the triangle dominating not
in Figure 1B fails to also dominate the structure containing anybody. Consequently, the sentence
is not well-formed.

The reader may confirm that the same hierarchical constraint dictates whether the examples in
(4–5) are well-formed or not, where we have depicted the hierarchical sentence structure in
terms of conventional labeled brackets:

(4) [S1 [NP The book [S2 I bought]S2]NP did not [VP appeal to anyone]VP]S1
(5) *[S1 [NP The book [S2 I did not buy]S2]NP [VP appealed to anyone]VP]S1

Only in example (4) does the hierarchical structure containing not (corresponding to the sentence
The book I bought did not appeal to anyone) also immediately dominate the NPI anybody. In (5)
not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
and (5) is not, exactly the predicted result if the hierarchical constraint is correct.

Even more strikingly, the same constraint appears to hold across languages and in many other
syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump

(A) (B)

X X

X X X X

The book X X X The book X appealed to anybody
did not

that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.

734 Trends in Cognitive Sciences, December 2015, Vol. 19, No. 12

Generalization: not must “structurally precede” anybody
- the psychological reality of structural sensitivty  

is not empirically controversial
- many different theories of the details of structure

- hypothesis: kids learn language easily because they  
don’t consider many “obvious” structurally insensitive
hypotheses

Language is hierarchical

The talk

I gave
did not

appeal to anybody

appealed to anybodyThe talk

I did not give

• Recurrent neural networks are incredibly powerful models
of sequences (e.g., of words)

• In fact, RNNs are Turing complete!  
(Siegelmann, 1995)

• But do they make good generalizations from finite
samples of data?

• What inductive biases do they have?

• What assumptions about representations do models
that use them make?

Recurrent neural networks 
A good model of language?

• Recurrent neural networks are incredibly powerful models
of sequences (e.g., of words)

• In fact, RNNs are Turing complete!  
(Siegelmann, 1995)

• But do they make good generalizations from finite
samples of data?

• What inductive biases do they have?

• What assumptions about representations do models
that use them make?

Recurrent neural networks 
A good model of language?

• Understanding the biases of neural networks is tricky

• We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

• But, there is lots of evidence RNNs prefer sequential recency

• Evidence 1: Gradients become attenuated across time

• Analysis; experiments with synthetic datasets 
(yes, LSTMs help but they have limits)

• Evidence 2: Training regimes like reversing sequences in seq2seq learning

• Evidence 3: Modeling enhancements to use attention (direct connections back in
remote time)

• Chomsky (to crudely paraphrase 60 years of work): 
sequential recency is not the right bias for modeling human language.

Recurrent neural networks 
Inductive bias

• Understanding the biases of neural networks is tricky

• We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

• But, there is lots of evidence RNNs prefer sequential recency

• Evidence 1: Gradients become attenuated across time

• Analysis; experiments with synthetic datasets 
(yes, LSTMs help but they have limits)

• Evidence 2: Training regimes like reversing sequences in seq2seq learning

• Evidence 3: Modeling enhancements to use attention (direct connections back in
remote time)

• Chomsky (to crudely paraphrase 60 years of work): 
sequential recency is not the right bias for modeling human language.

Recurrent neural networks 
Inductive bias

• Understanding the biases of neural networks is tricky

• We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

• But, there is lots of evidence RNNs prefer sequential recency

• Evidence 1: Gradients become attenuated across time

• Analysis; experiments with synthetic datasets 
(yes, LSTMs help but they have limits)

• Evidence 2: Training regimes like reversing sequences in seq2seq learning

• Evidence 3: Modeling enhancements to use attention (direct connections back in
remote time)

• Chomsky (to crudely paraphrase 60 years of work): 
sequential recency is not the right bias for effective learning of human language.

Recurrent neural networks 
Inductive bias

Topics
• Recursive neural networks for sentence

representation

• Recurrent neural network grammars and parsing

• Word representations by looking inside words  
(words have structure too!)

• Analysis of neural networks with linguistic concepts

Topics
• Recursive neural networks for sentence

representation

• Recurrent neural network grammars and parsing

• Word representations by looking inside words  
(words have structure too!)

• Analysis of neural networks with linguistic concepts

Representing a sentence
Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive  
or negative sentiment.

Representing a sentence
Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive  
or negative sentiment.

Why might this sentence pose a problem for interpretation?

Representing a sentence

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xic =
1

|x|
X

i

xi

Bag of words:

this film is hardly a treat

Representing a sentence

Recurrent neural network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

h6h5h4h3h2h1 c = h6

this film is hardly a treat

How do languages express
meaning?

• Principle of compositionality: the meaning of a complex
expression is determined by the meanings of its constituent
expressions and the rules that combine them.

• Syntax and parsing

• Syntax is the study of how words fit together to form
phrases and ultimately sentences

• We can use syntactic parsing to decompose sentences
into constituent expressions and rules that were used to
construct them out of more primitive expressions (and
ultimately individual words)

Syntax as Trees

DT NN RB DT NN

x1 x2 x3 x4 x5 x6

NP

VP

NP

NP

S

VBZ

this film is hardly a treat

Syntax as Trees

DT NN RB DT NN

x1 x2 x3 x4 x5 x6

NP

VP

NP

NP

S

VBZ

this film is hardly a treat

Syntax as Trees

DT NN RB DT NN

x1 x2 x3 x4 x5 x6

NP

VP

NP

NP

S

VBZ

this film is hardly a treat

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

Socher et al. (ICML 2011), et passim

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

h = tanh(W[`; r] + b)h = tanh(W[`; r] + b)

Socher et al. (ICML 2011), et passim

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

h = tanh(W[`; r] + b)

h = tanh(W[`; r] + b)h = tanh(W[`; r] + b)

Socher et al. (ICML 2011), et passim

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

h = tanh(W[`; r] + b)

h = tanh(W[`; r] + b)

h = tanh(W[`; r] + b)h = tanh(W[`; r] + b)

Socher et al. (ICML 2011), et passim

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

h = tanh(W[`; r] + b)

h = tanh(W[`; r] + b)

h = tanh(W[`; r] + b)

h = tanh(W[`; r] + b)h = tanh(W[`; r] + b)

Socher et al. (ICML 2011), et passim

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

NP

NP

VP

S

NP

“Syntactic untying”

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

NP

NP

VP

S

NP
h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

“Syntactic untying”

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

NP

NP

VP

S

NP
h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

“Syntactic untying”

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

NP

NP

VP

S

NP

h = tanh(WVP[`; r] + b)

h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

“Syntactic untying”

Representing a sentence
Recursive Neural Network

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

c

this film is hardly a treat

NP

NP

VP

S

NP

h = tanh(WVP[`; r] + b)

h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

h = tanh(WNP[`; r] + b)

h = tanh(WS[`; r] + b)

“Syntactic untying”

Representing Sentences
• Bag of words/n-grams

• Convolutional neural network

• Recurrent neural network

• Recursive neural network

• In all of these, we can train by backpropagating
through the “composition function”

Stanford Sentiment Treebank
very positive

positive
neutral
negative
very negative

Socher et al. (2013, EMNLP)

Internal Supervision

Some Results
all “not good” “not terrible”

Bigram Naive
Bayes 83.1 19.0 27.3

RecNN 
(RNTN form) 85.4 71.4 81.8

h = tanh (Vvec([`; r]⌦ [`; r]) +W[`; r] + b)

Outer product` r

h

Some Results
all “not good” “not terrible”

Bigram Naive
Bayes 83.1 19.0 27.3

RecNN 
(RNTN form) 85.4 71.4 81.8

h = tanh (Vvec([`; r]⌦ [`; r]) +W[`; r] + b)

Outer product` r

h

Predictions by RNTN variant of RecNN.

Some Predictions

Many Extensions
• Various cell definitions, e.g., (matrix, vector) pairs, higher order tensors

• Improved gradient dynamics using tree cells defined in terms of LSTM
updates with gating instead of RNN. Exercise: generalize the definition
of a sequential LSTM to the tree case. Check the paper.

• n-ary children

• “Inside outside” networks provide an analogue to bidirectional RNNs
(lecture from a few weeks ago)

• Dependency syntax rather than “phrase structure” syntax

• Applications to programming languages, visual scene analysis—
anywhere you can get trees, you can apply RecNNs

Recursive vs. Recurrent
• Advantages

• Meaning decomposes roughly according to the syntax of a sentence (and we
have good tools for obtaining syntax trees for sentences) — better inductive
bias

• Shorter gradient paths on average (log2(n) in the best case)

• Internal supervision of the node representations (“auxiliary objectives”) is
sometimes available

• Disadvantages

• We need parse trees

• Trees tend to be right-branching—gradients still have a long way to go!

• More difficult to batch than RNNs

Topics
• Recursive neural networks for sentence

representation

• Recurrent neural network grammars and parsing

• Word representations by looking inside words  
(words have structure too!)

• Analysis of neural networks with linguistic concepts

Where do trees come from?

• Generate symbols sequentially using an RNN

• Add some control symbols to rewrite the history
occasionally

• Occasionally compress a sequence into a constituent

• RNN predicts next terminal/control symbol based on the
history of compressed elements and non-compressed
terminals

• This is a top-down, left-to-right generation of a
tree+sequence

An alternative to RNN LMs 
Recurrent Neural Net Grammars

• Generate symbols sequentially using an RNN

• Add some control symbols to rewrite the history
occasionally

• Occasionally compress a sequence into a constituent

• RNN predicts next terminal/control symbol based on the
history of compressed elements and non-compressed
terminals

• This is a top-down, left-to-right generation of a
tree+sequence

An alternative to RNN LMs 
Recurrent Neural Net Grammars

• Generate symbols sequentially using an RNN

• Add some control symbols to rewrite the history
occasionally

• Occasionally compress a sequence into a constituent

• RNN predicts next terminal/control symbol based on the
history of compressed elements and non-compressed
terminals

• This is a top-down, left-to-right generation of a
tree+sequence

An alternative to RNN LMs 
Recurrent Neural Net Grammars

The hungry cat meows loudly

Example derivation 

stack action probability

stack action probability
NT(S) p(nt(S) | top)

stack action

(S

probability
NT(S) p(nt(S) | top)

stack action

(S

probability
NT(S) p(nt(S) | top)

NT(NP) p(nt(NP) | (S)

stack action

(S

(S (NP

probability
NT(S) p(nt(S) | top)

NT(NP) p(nt(NP) | (S)

stack action

(S

(S (NP

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

stack action

(S

(S (NP

(S (NP The

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

stack action

(S

(S (NP

(S (NP The

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)

stack action

(S

(S (NP

(S (NP The hungry

(S (NP The

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)

stack action

(S

(S (NP

(S (NP The hungry

(S (NP The

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

stack action

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

stack action

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

stack action

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

(S (NP The hungry cat)

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

stack action

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

(S (NP The hungry cat)

(S (NP The hungry cat)

Compress “The hungry cat”  
into a single composite symbol

probability
NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

stack action

(S (NP The hungry cat)

NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

probability

stack action

(S (NP The hungry cat)

NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

NT(VP) p(nt(VP) | (S,
(NP The hungry cat))

probability

stack action

(S (NP The hungry cat) (VP

(S (NP The hungry cat)

NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

NT(VP) p(nt(VP) | (S,
(NP The hungry cat))

probability

stack action

GEN(meows)(S (NP The hungry cat) (VP

(S (NP The hungry cat)

NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

NT(VP) p(nt(VP) | (S,
(NP The hungry cat))

probability

stack action

GEN(meows)

REDUCE

(S (NP The hungry cat) (VP meows) GEN(.)

REDUCE

(S (NP The hungry cat) (VP meows) .)

(S (NP The hungry cat) (VP meows) .

(S (NP The hungry cat) (VP meows

(S (NP The hungry cat) (VP

(S (NP The hungry cat)

NT(S) p(nt(S) | top)

GEN(The) p(gen(The) | (S, (NP)

NT(NP) p(nt(NP) | (S)

GEN(hungry) p(gen(hungry) | (S, (NP,

The)
GEN(cat) p(gen(cat) | . . .)

REDUCE p(reduce | . . .)

(S

(S (NP

(S (NP The hungry cat

(S (NP The hungry

(S (NP The

NT(VP) p(nt(VP) | (S,
(NP The hungry cat))

probability

• Valid (tree, string) pairs are in bijection to valid sequences of
actions (specifically, the DFS, left-to-right traversal of the
trees)

• Every stack configuration perfectly encodes the complete
history of actions.

• Therefore, the probability decomposition is justified by the
chain rule, i.e.

(chain rule)

(prop 2)

p(x,y) = p(actions(x,y))

p(actions(x,y)) =
Y

i

p(ai | a<i)

=
Y

i

p(ai | stack(a<i))

(prop 1)

Some things you can (easily) prove 

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. unbounded depth

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. unbounded depth

1. Unbounded depth → recurrent neural nets

h1 h2 h3 h4

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. Unbounded depth → recurrent neural nets

h1 h2 h3 h4

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. Unbounded depth → recurrent neural nets

h1 h2 h3 h4

2. arbitrarily complex trees

2. Arbitrarily complex trees → recursive neural nets

(NP The hungry cat)Need representation for:

Syntactic composition 

(NP The hungry cat)Need representation for:

NP

What head type?

Syntactic composition 

The

(NP The hungry cat)Need representation for:

NP

What head type?

Syntactic composition 

The hungry

(NP The hungry cat)Need representation for:

NP

What head type?

Syntactic composition 

The hungry cat

(NP The hungry cat)Need representation for:

NP

What head type?

Syntactic composition 

The hungry cat)

(NP The hungry cat)Need representation for:

NP

What head type?

Syntactic composition 

TheNP hungry cat)

(NP The hungry cat)Need representation for:

Syntactic composition 

TheNP hungry cat) NP

(NP The hungry cat)Need representation for:

Syntactic composition 

TheNP hungry cat) NP

(NP The hungry cat)Need representation for:

(

Syntactic composition 

TheNP hungry cat) NP (

(NP The hungry cat)Need representation for:

Syntactic composition 

TheNP cat) NP (

(NP The (ADJP very hungry) cat)
Need representation for: (NP The hungry cat)

hungry

Syntactic composition 
Recursion

TheNP cat) NP (

(NP The (ADJP very hungry) cat)
Need representation for: (NP The hungry cat)

| {z }
v

v

Syntactic composition 
Recursion

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. Unbounded depth → recurrent neural nets
2. Arbitrarily complex trees → recursive neural nets

h1 h2 h3 h4

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. Unbounded depth → recurrent neural nets
2. Arbitrarily complex trees → recursive neural nets

⇠REDUCE

h1 h2 h3 h4

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. Unbounded depth → recurrent neural nets
2. Arbitrarily complex trees → recursive neural nets

⇠REDUCE

(S (NP The hungry cat) (VP meows)p(ai+1 |)

Modeling the next action 

(S (NP The hungry cat) (VP meowsp(ai |)

1. Unbounded depth → recurrent neural nets
2. Arbitrarily complex trees → recursive neural nets

⇠REDUCE

(S (NP The hungry cat) (VP meows)p(ai+1 |)
3. limited updates

3. Limited updates to state → stack RNNs

• Augment RNN with a stack pointer

• Two constant-time operations

• Push - read input, add to top of stack

• Pop - move stack pointer back

• A summary of stack contents is obtained by
accessing the output of the RNN at location of the
stack pointer

Stack RNNs 
Operation

;

y0

PUSH

Stack RNNs 
Operation

; x1

y0 y1

POP

Stack RNNs 
Operation

; x1

y0 y1

Stack RNNs 
Operation

; x1

y0 y1

PUSH

Stack RNNs 
Operation

; x1

y0 y1 y2

x2

POP

Stack RNNs 
Operation

; x1

y0 y1 y2

x2

Stack RNNs 
Operation

; x1

y0 y1 y2

x2

PUSH

Stack RNNs 
Operation

; x1

y0 y1 y2

x2 x3

y3

Stack RNNs 
Operation

• What inductive biases do RNNGs exhibit?

• If we accept the following two propositions

• RNNs have recency biases

• Syntactic composition learns to represent trees by their heads

• Then we can say that they have a bias for syntactic recency rather
than sequential recency

• Not a perfect model, but maybe a better model

RNNGs 
Inductive bias?

(S (NP The talk (SBAR I did not give)) (VP appealed (PP to …

“talk”z }| {

• Generative

• Jointly model sentence x and its tree y

• Trained using gold standard trees (here: from a tree bank) to minimize
cross-entropy

• We call this joint distribution p(x,y)

• Discriminative

• Given a sentence x, predict the sequence to of actions y necessary to
build its parse tree

• Instead of GEN, use SHIFT

• We call this conditional distribution q(y | x)

Parameter estimation 

To parse (find a tree for x): we need to compute
y

⇤
= arg max

y2Y
x

p(y | x)

= arg max

y2Y
x

p(x,y)

p(x)

= arg max

y2Y
x

p(x,y)

def. conditional prob.

denominator is constant

• Generative

• Jointly model sentence x and its tree y

• Trained using gold standard trees (here: from a tree bank) to minimize
cross-entropy

• We call this joint distribution p(x,y)

• Discriminative

• Given a sentence x, predict the sequence to of actions y necessary to
build its parse tree - the full sentence x is observable

• Instead of GEN, use SHIFT

• We call this conditional distribution q(y | x)

Parameter estimation 

To parse: simply use beam search to find the best sequence.

Type F1

Petrov and Klein (2007) Gen 90.1

Shindo et al (2012) 
Single model Gen 91.1

Vinyals et al (2015) 
PTB only Disc 90.5

Shindo et al (2012) 
Ensemble Gen 92.4

Vinyals et al (2015) 
Semisupervised

Disc+SemiS
up 92.8

Discriminative  
PTB only Disc 91.7

Generative  
PTB only Gen 93.6

Choe and Charniak (2016) 
Semisupervised

Gen 
+SemiSup 93.8

English PTB (Parsing)

Type F1

Petrov and Klein (2007) Gen 90.1

Shindo et al (2012) 
Single model Gen 91.1

Vinyals et al (2015) 
PTB only Disc 90.5

Shindo et al (2012) 
Ensemble Gen 92.4

Vinyals et al (2015) 
Semisupervised

Disc+SemiS
up 92.8

Discriminative  
PTB only Disc 91.7

Generative  
PTB only Gen 93.6

Choe and Charniak (2016) 
Semisupervised

Gen 
+SemiSup 93.8

English PTB (Parsing)

Type F1

Petrov and Klein (2007) Gen 90.1

Shindo et al (2012) 
Single model Gen 91.1

Vinyals et al (2015) 
PTB only Disc 90.5

Shindo et al (2012) 
Ensemble Gen 92.4

Vinyals et al (2015) 
Semisupervised

Disc+SemiS
up 92.8

Discriminative  
PTB only Disc 91.7

Generative  
PTB only Gen 93.6

Choe and Charniak (2016) 
Semisupervised

Gen 
+SemiSup 93.8

English PTB (Parsing)

Perplexity

5-gram IKN 169.3

LSTM + Dropout 113.4

Generative (approx.) 102.4

English Language Modeling

p(x) =
X

y2Y
x

p(x,y)

• Build trees by pushing words (“shift”) onto a stack and
combing elements at the top of the stack into a
syntactic constituent (“reduce”)

• Given current stack and buffer of unprocessed
words, what action should the algorithm take?

• Widely used

• Good accuracy

• O(n) runtime [much faster than other parsing algos]

Transition-based parsing 

I saw her duck ROOT

BufferStack Action

I saw her duck ROOT

BufferStack Action
SHIFT

I saw her duck ROOT

BufferStack Action
SHIFT

I saw her duck ROOT

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFTI saw her duck ROOT

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFTI saw her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

I saw her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

I saw her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

I saw her duck ROOT

I saw her duck ROOT

her duck ROOTI saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

I saw her duck ROOT

I saw her duck ROOT

her duck ROOTI saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

REDUCE-L

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

REDUCE-L

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

REDUCE-L

REDUCE-R

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

REDUCE-L

REDUCE-R

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

I saw her duck
I saw her duck ROOT

I saw her duck ROOT

I saw

I saw her duck ROOT

BufferStack Action
SHIFT

SHIFT

REDUCE-L

SHIFT

SHIFT

REDUCE-L

REDUCE-R

I saw her duck ROOT

I saw her duck ROOT

her duck ROOT

I saw her duck ROOT

SHIFT

REDUCE-R

I saw her duck ROOT

ROOT

I saw her duck ROOT

I saw her duck
I saw her duck ROOT

I saw her duck ROOT

I saw

SH
IFT
RE
D-L

(am
od
)

…
pt

overhasty
an decision

amod

|{z}

SH
IFT
RE
D-L

(am
od
)

…
S

;

pt

TOP

overhasty
an decision was

amod

|{z} |{z}

SH
IFT
RE
D-L

(am
od
)

…

made

S B

; ;

pt

root

TO
PTOP

overhasty
an decision was

amod

REDUCE-LEFT(amod)

SHIFT
|{z} |{z}

|
{z

}
…

SH
IFT
RE
D-L

(am
od
)

…

made

S B

A

; ;

pt

root

TO
PTOP

TOP

Some Results

Dyer et al. (2015, ACL)

Accuracy

Feed forward
NN 93.1

Stack LSTM 91.8

Topics
• Recursive neural networks for sentence

representation

• Recurrent neural network grammars and parsing

• Word representations by looking inside words  
(words have structure too!)

• Analysis of neural networks with linguistic concepts

ARBITRARINESS (de Saussure, 1916)

Word representation

ARBITRARINESS
car c b bar+� =

(de Saussure, 1916)

Word representation

ARBITRARINESS
car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

Word representation

ARBITRARINESS
car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Word representation

ARBITRARINESS

Auto voiture xe hơi
ọkọ ayọkẹlẹ koloi sakyanan

car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Word representation

ARBITRARINESS

Auto voiture xe hơi
ọkọ ayọkẹlẹ koloi sakyanan

car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Is it reasonable to compose characters into
“meanings”?

Word representation

ARBITRARINESS

Auto voiture xe hơi
ọkọ ayọkẹlẹ koloi sakyanan

car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Word representation

OPPORTUNITY

ARBITRARINESS

Auto voiture xe hơi
ọkọ ayọkẹlẹ koloi sakyanan

car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Word representation

OPPORTUNITY
cool | coooool | coooooooool

ARBITRARINESS

Auto voiture xe hơi
ọkọ ayọkẹlẹ koloi sakyanan

car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Word representation

OPPORTUNITY
cool | coooool | coooooooool
cat s+ = cats

ARBITRARINESS

Auto voiture xe hơi
ọkọ ayọkẹlẹ koloi sakyanan

car c b bar+� = cat c b bat+� =

(de Saussure, 1916)

car

Word representation

OPPORTUNITY
cool | coooool | coooooooool
cat s+ = cats bat s+ = bats

dis
hw

as
he

r

ca
t
ca

ts
do

g
do

gs
ea

te
n

at
e

ea
tin

g

ea
ts

aa
rd

va
rk

s

aa
rd

va
rk

dis
h
was

he
r

ea
t

lou
dly

lou
de

st

lou
de

r

lou
d

Words as structured objects

69

dis
hw

as
he

r

ca
t
ca

ts
do

g
do

gs
ea

te
n

at
e

ea
tin

g

ea
ts

aa
rd

va
rk

s

aa
rd

va
rk

dis
h
was

he
r

ea
t

lou
dly

lou
de

st

lou
de

r

lou
d

Words as structured objects

69

ea
ts

Words as structured objects

69

ea
ts

Words as structured objects

69

ea
ts

Words as structured objects

69

eats

1. Normal word vector

ea
ts

Words as structured objects

69

eats

1. Normal word vector

ea
ts

Words as structured objects

69

eats

eat 1. Normal word vector
2. Morphological word vector

ea
ts

Words as structured objects

69

eats

eat +SG 1. Normal word vector
2. Morphological word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P 1. Normal word vector
2. Morphological word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P 1. Normal word vector
2. Morphological word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P

e

1. Normal word vector
2. Morphological word vector
3. Character-based word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P

e a

1. Normal word vector
2. Morphological word vector
3. Character-based word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P

e a t

1. Normal word vector
2. Morphological word vector
3. Character-based word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P

e a t s

1. Normal word vector
2. Morphological word vector
3. Character-based word vector

ea
ts

Words as structured objects

69

eats

eat +SG+3P

e a t s

1. Normal word vector
2. Morphological word vector
3. Character-based word vector

70
cats eat loudly

</s>cats eat loudly

Generating new word forms

71

Generating new word forms

71

• Normally we model directly.

Generating new word forms

71

• Normally we model directly.
• Instead let’s model

Generating new word forms

71

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

71

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

72

Mode
choice

Word Root +
Affixes

Sequence of
characters

• Normally we model directly.
• Instead let’s model

 where m loops over three  
 “generation modes”:
• words
• morphemes
• characters

Generating new word forms

73cats eat loudly

</s>cats eat loudly

Putting it all together

Turkish

0

0.58

1.15

1.73

2.3

PureC C CM CW CMW

Finnish

0

0.68

1.35

2.03

2.7

PureC C CM CW CMW

Language modeling results

Lower is better.
Columns: 
 RNN predicts language as a sequences of characters  
 Compositional character model only  
 Character+morpheme model
 Character+word embedding model  
 Character+morpheme+word embedding model

Topics
• Recursive neural networks for sentence

representation

• Recurrent neural network grammars and parsing

• Word representations by looking inside words  
(words have structure too!)

• Analysis of neural networks with linguistic concepts

What do Neural Nets Learn
about Linguistics?

What do Neural Nets Learn
about Linguistics?

START

The key(s) to the cabinet(s) is/are here STOP

Linzen, Dupoux, and Goldberg (2017, TACL)

The key(s) to the cabinet(s) is/are here

What do Neural Nets Learn
about Linguistics?

subject

START

The key(s) to the cabinet(s) is/are here STOP

Linzen, Dupoux, and Goldberg (2017, TACL)

The key(s) to the cabinet(s) is/are here

subject

START

The key(s) to the cabinet(s) is/are here STOP

Linzen, Dupoux, and Goldberg (2017, TACL)

The key(s) to the cabinet(s) is/are here

Experiment 1: Can a RNN
learn syntax?

Experiment 1: Can a RNN
learn syntax?

START

SG/PL

Linzen, Dupoux, and Goldberg (2017, TACL)

The key(s) to the cabinet(s)

• This is a great set up!

• To generate training data, we just need to be
able to tag present tense verbs in a corpus

• Authors used ~1.4M sentences from Wikipedia

• To analyze, we might want a bit more of
information about the sentences to know when
the model gets it right and when it gets it wrong

Experiment 1: Can a RNN
learn syntax?

Experiment 1 Results

Experiment 1 Results

Experiment 1 Results

The keys to the cabinet → PL

keys cabinet → PL

Experimental Variants

Training signal Evaluation Task

The keys to the cabinet {SINGULAR,
PLURAL} P(PL) > P(SG)?

The keys to the cabinet is/are {SINGULAR,
PLURAL} P(PL) > P(SG)?

The keys to the cabinet are here {GRAMMATICAL,
UNGRAMMATICAL}

P(GRAMMATICAL) >
P(UNGRAMMATICAL)?

The keys to the cabinet {are, is, cat, dog,
the, …} P(are) > P(is)?

Experimental Variants

Training signal Evaluation Task

The keys to the cabinet {SINGULAR,
PLURAL} P(PL) > P(SG)?

The keys to the cabinet is/are {SINGULAR,
PLURAL} P(PL) > P(SG)?

The keys to the cabinet are here {GRAMMATICAL,
UNGRAMMATICAL}

P(GRAMMATICAL) >
P(UNGRAMMATICAL)?

The keys to the cabinet {are, is, cat, dog,
the, …} P(are) > P(is)?

More Results

Summary
• RNN Language Models are not learning the correct generalizations

about syntax

• Open questions

• If RNNs are trained jointly to predict “singular/plural” and the
next word, would they do better? [Auxiliary objective]

• Would RNNGs do a better job on this task?

• Other experimental variants

• Is there a “simple” function ?

• Is there a single dimension corresponding to “number”?

f(ht) ! {sg, pl}

Linguistics in DL
• Two benefits:

• Help us design better models based on
knowledge about nature

• Help us interrogate our models to see if they
behave like they should

• Any questions?

