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What is linguistics®

How do human languages represent meaning”

How does the mind/brain process and generate
language”

What are the possible/impossible human
languages”

How do children learn language from a very
small sample of data?



An Important insight
Sentences are hierarchical

(1) a. The talk | gave did not appeal to anybody.

Examples adapted from Everaert et al. (7T/CS 2015)
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An Important insight
Sentences are hierarchical

(1) a. The talk | gave did not appeal to an§/body.
b. *The talk | gave appealed to anybody.

Generalization hypothesis: not must come before anybody

(2) *The talk | did not give appealed to anybody.

Examples adapted from Everaert et al. (7T/CS 2015)
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. anguage Is hierarchical

X X
X X X X
The talk X X X The talk X appealed to anybody
T dia not/\
| gave appeal to anybody | did not give

Generalization: not must “structurally precede” anybody

- the psychological reality of structural sensitivty
IS not empirically controversial
- many different theories of the details of structure

- hypothesis: kids learn language easily because they
don't consider many “obvious” structurally insensitive
hypotheses

Examples adapted from Everaert et al. (7T/CS 2015)




Recurrent neural networks
A good model of language?

* Recurrent neural networks are incredibly powerful models
of sequences (e.g., of words)

* |n fact, RNNs are Turing complete!
(Siegelmann, 1995)



Recurrent neural networks
A good model of language?

* Recurrent neural networks are incredibly powerful models
of sequences (e.g., of words)

* |n fact, RNNs are Turing complete!
(Siegelmann, 1995)

e But do they make good generalizations from finite
samples of data”

 What inductive biases do they have?

 What assumptions about representations do models
that use them make?
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(yes, LSTMs help but they have limits)
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Recurrent neural networks
Inductive bias

* Understanding the biases of neural networks is tricky

* We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

« But, there is lots of evidence RNNs prefer sequential recency
e Evidence 1: Gradients become attenuated across time

* Analysis; experiments with synthetic datasets
(yes, LSTMs help but they have limits)

e Evidence 2: Training regimes like reversing sequences in seqg2seq learning

e Evidence 3: Modeling enhancements to use attention (direct connections back in
remote time)

« Chomsky (to crudely paraphrase 60 years of work):
sequential recency is not the right bias for effective learning of human language.



lopics

Recursive neural networks for sentence
representation

Recurrent neural network grammars and parsing

Word representations by looking inside words
(words have structure too!)

Analysis of neural networks with linguistic concepts



lopics

e Recursive neural networks for sentence
representation



Representing a sentence

Input sentence:

this film is hardly a treat

Task: Classity this sentence as having either positive
or negative sentiment.



Representing a sentence

Input sentence:

this film is hardly a treat

Task: Classity this sentence as having either positive
or negative sentiment.

Why might this sentence pose a problem for interpretation?



Representing a sentence

Bag of words:




Representing a sentence

Recurrent neural network

hy o hy | hyp hy | hspehg C:h6
X1 X9 X3 X4 X5 X6
this film is hardly a treat



HOW dO languages express
meaning’

* Principle of compositionality: the meaning of a complex
expression is determined by the meanings of its constituent
expressions and the rules that combine them.

e Syntax and parsing

o Syntax is the study of how words fit together to form
phrases and ultimately sentences

* \We can use syntactic parsing to decompose sentences
Into constituent expressions and rules that were used to
construct them out of more primitive expressions (and
ultimately individual words)
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Representing a sentence

Recursive Neural Network
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Socher et al. (ICML 2011), et passim
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Representing Sentences

Bag of words/n-grams
Convolutional neural network
Recurrent neural network
Recursive neural network

In all of these, we can train by backpropagating
through the “composition function”



Stanford Sentiment Treebank
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Internal Supervision

co P2 = 8(a,p1)

©o p1=8(b,c)

©o ©O Xo)
. not very good..

a b C




Some Results

Bigram Naive

Bayes 83.1
RecNN
(RNTN form) Ho
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Some Results

“not good” “not terrible”

Bigram Naive

Bayes 83.1 19.0 27.3
RecNN
(RNTN form) 85.4 71.4 81.8
h h = tanh (Vvec([€;r]| ® [£;r]) + W [€;r| + b)

[\ X

r Quter product




Some Predictions
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Predictions by RNTN variant of RecNN.



Many Extensions

Various cell definitions, e.g., (matrix, vector) pairs, higher order tensors
Improved gradient dynamics using tree cells defined in terms of LSTM

updates with gating instead of RNN. Exercise: generalize the definition
of a sequential LSTM to the tree case. Check the paper.

n-ary children

‘Inside outside™ networks provide an analogue to bidirectional RNNs
(lecture from a few weeks ago)

Dependency syntax rather than “phrase structure”™ syntax

Applications to programming languages, visual scene analysis—
anywhere you can get trees, you can apply RecNNs



Recursive vSs. Recurrent

 Advantages

 Meaning decomposes roughly according to the syntax of a sentence (and we
have good tools for obtaining syntax trees for sentences) — better inductive

bias
« Shorter gradient paths on average (log,(n) in the best case)

* Internal supervision of the node representations (“auxiliary objectives”) is
sometimes available

 Disadvantages
 We need parse trees
e Trees tend to be right-branching—gradients still have a long way to go!

 More difficult to batch than RNNSs



lopics

* Recurrent neural network grammars and parsing



Where do trees come from?




An alternative to RNN LMs
Recurrent Neural Net Grammars

* (Generate symbols sequentially using an RNN
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* (Generate symbols sequentially using an RNN

 Add some control symbols to rewrite the history
occasionally

 Occasionally compress a sequence into a constituent
* RNN predicts next terminal/control symbol based on the

nistory of compressed elements and non-compressed
terminals




An alternative to RNN LMs
Recurrent Neural Net Grammars

* (Generate symbols sequentially using an RNN

 Add some control symbols to rewrite the history
occasionally

 Occasionally compress a sequence into a constituent
* RNN predicts next terminal/control symbol based on the

nistory of compressed elements and non-compressed
terminals

* This is a top-down, left-to-right generation of a
tree+sequence
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The hungry cat meows loudly
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stack | action probability
NT(S) p(NT(S) | TOP)
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Some things you can (easily) prove

e Valid (tree, string) pairs are in bijection to valid sequences of
actions (specifically, the DFS, left-to-right traversal of the
trees)

e Every stack configuration perfectly encodes the complete
history of actions.

* Therefore, the probability decomposition is justified by the
chain rule, I.e.

p(w,y) — (CLCtZOTLS(aj y)) (prop -I)
plactions( HP ai | a<i) (chain rule)

— Hp a; | stack(a;)) (|OFOIO 2)
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Modeling the next action

(NP The hungry cat)

2. arbitrarily complex trees

1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets
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Syntactic composition
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LA S S A 4

J

L A A
L A A

J J

k

NP| |The||lhungry||cat )
What head type?___/




Syntactic composition

Need representation for: (NP The hungry cat)

o J J J
o J o J
o _J 4 J

NP| |The||lhungry||cat




Syntactic composition

Need representation for: (NP The hungry cat)

. A A
L A A
k
L A A
L A A

NP| |The||lhungry||cat NP




Syntactic composition

Need representation for: (NP The hungry cat)

o0 0 00

DR

NP| |The||lhungry||cat NP

. A A
. A A

sl A A
. A A
. A A




Syntactic composition

Need representation for: (NP The hungry cat)

)

NP

13

il A A
L A A
L A A
L A A
il A A
L A A

NP| |The hungry cat




Syntactic composition
Recursion

Need representation for:
(NP The (ADJP very hungry) cat)
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Syntactic composition
Recursion
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Modeling the next action

p(a@- (S (NP The hungry cat) (VP meows ) ~ REDUCE

p(a@'_|_1 (S (NP The hungry cat) (VP meows) )

1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets



Modeling the next action

p(a@- (S (NP The hungry cat) (VP meows ) ~ REDUCE

p(a@'_|_1 (S (NP The hungry cat) (VP meows) )
3. limited updates
1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets
3. Limited updates to state — stack RNNs



Stack RNNs
Operation

* Augment RNN with a stack pointer
* [wo constant-time operations
* Push - read input, add to top of stack
* Pop - move stack pointer back
* A summary of stack contents is obtained by

accessing the output of the RNN at location of the
stack pointer



Stack RNNs
Operation
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Operation




RNNGs
Inductive bias?

 What inductive biases do RNNGs exhibit?
e |f we accept the following two propositions
« RNNs have recency biases

e Syntactic composition learns to represent trees by their heads

 Then we can say that they have a bias for syntactic recency rather
than sequential recency

e Not a perfect model, but maybe a better model

“talk”
R

(S (NP The talk (SBAR I did not give)) (VP appealed (PP to ...



Parameter estimation

e Generative

e Jointly model sentence x and its tree y

e Trained using gold standard trees (here: from a tree bank) to minimize
Cross-entropy

« We call this joint distribution p(x,y)

To parse (find a tree for x): we need to compute

Y

X

alrg I1Max £
g Iax p(y | =)

p(z,y)
arg max
yeYV. pl(x)

arg max p(<a,
gyeymp( Y)

def. conditional prob.

denominator Is constant



Parameter estimation

 Generative
e Jointly model sentence x and its tree y

e Trained using gold standard trees (here: from a tree bank) to minimize
Cross-entropy

« We call this joint distribution p(x,y)
 Discriminative

e Given a sentence X, predict the sequence to of actions y necessary to
build its parse tree - the full sentence x is observable

* |Instead of GEN, use SHIFT

« We call this conditional distribution g(y | x)

To parse: simply use beam search to find the best sequence.



English PTB (Parsing)
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English Language Modeling

Perplexity

5-gram IKN

LSTM + Dropout

Generative (approx.)

p(x) =Y  pz,y)

yEy:n



Transition-based parsing

» Build trees by pushing words (“shift”) onto a stack and
combing elements at the top of the stack into a
syntactic constituent (“reduce”)

* Given current stack and buffer of unprocessed
words, what action should the algorithm take?

 Widely used
 (Good accuracy

* O(n) runtime [much faster than other parsing algos]
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Some Results

Accuracy

Feed forward

NN 93.1

Stack LSTM 01.8

Dyer et al. (2015, ACL)



lopics

* Word representations by looking inside words
(words have structure too!)
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Word representation

ARBITRARINESS
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Is it reasonable to compose characters into
“meanings”?
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Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b = bat
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car Auto voiture  xe ho
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Generating new word forms
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Putting It all together

cats eat loudly </s>
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L anguage modeling results

Turkish Finnish

2.7

2.03

1.35

0.68

PureC c M W MW PureC c o)) cw CMw

Lower is better.

Columns:
RNN predicts language as a sequences of characters
Compositional character model only
Character+morpheme model
Character+word embedding model
Character+morpheme+word embedding model




lopics

* Analysis of neural networks with linguistic concepts



What do Neural Nets Learn
about Linguistics?
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Experiment 1: Can a RNN
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Experiment 1: Can a RNN
learn syntax”
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Linzen, Dupoux, and Goldberg (2017, TACL)



Experiment 1: Can a RNN

learn syntax”

* Thisis a great set up!

* Jo generate training data, we just need to be
able to tag present tense verbs in a corpus

* Authors used ~1.4M sentences from Wikipedia

|
{

‘0 analyze, we might want a bit more of
nformation about the sentences to know when

ne model gets it right and when it gets it wrong



Experiment 1 Results
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Error rate

Experiment 1 Results
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ExXperimental Variants

Training signal Evaluation Task

. {SINGULAR, -

The keys to the cabinet PLURAL! P(PL) > P(SG)"
. {SINGULAR, -

The keys to the cabinet is/are PLURAL) P(PL) > P(SG)"

{GRAMMATICAL, P(GRAMMATICAL) >
UNGRAMMATICAL} P(UNGRAMMATICAL)?

{are, is, cat, dog,
the, ...}

The keys to the cabinet are here

The keys to the cabinet P(are) > P(is)?
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summary

« RNN Language Models are not learning the correct generalizations
about syntax

* Open questions

* |f RNNs are trained jointly to predict “singular/plural” and the
next word, would they do better? [Auxiliary objective]

 Would RNNGs do a better job on this task?
o Other experimental variants
+ Is there a “simple” function f(h;) — {SG,PL}?

* |s there a single dimension corresponding to “number”?



Linguistics in DL

e WO benefits:

* Help us design better models based on
knowledge about nature

* Help us interrogate our models to see if they
behave like they should

* Any questions?



