Linguistic Knowledge
INn Neural Networks

Chris Dyer

) DeepMind

What is linguistics®

How do human languages represent meaning”

How does the mind/brain process and generate
language”

What are the possible/impossible human
languages”

How do children learn language from a very
small sample of data?

An Important insight
Sentences are hierarchical

(1) a. The talk | gave did not appeal to anybody.

Examples adapted from Everaert et al. (7T/CS 2015)

An Important insight
Sentences are hierarchical

(1) a. The talk | gave did not appeal to anybody.
b. *The talk | gave appealed to anybody.

Examples adapted from Everaert et al. (7T/CS 2015)

An Important insight
Sentences are hierarchical

NPI

(1) a. The talk | gave did not appeal to an§/body.
b. *The talk | gave appealed to anybody.

Examples adapted from Everaert et al. (7T/CS 2015)

An Important insight
Sentences are hierarchical

(1) a. The talk | gave did not appeal to an§/body.
b. *The talk | gave appealed to anybody.

Generalization hypothesis: not must come before anybody

Examples adapted from Everaert et al. (7T/CS 2015)

An Important insight
Sentences are hierarchical

(1) a. The talk | gave did not appeal to an§/body.
b. *The talk | gave appealed to anybody.

Generalization hypothesis: not must come before anybody

(2) *The talk | did not give appealed to anybody.

Examples adapted from Everaert et al. (7T/CS 2015)

. anguage Is hierarchical

X X
X X X X
The talk X X X The talk X appealed to anybody
T dia not/\
| gave appeal to anybody | did not give

Examples adapted from Everaert et al. (7T/CS 2015)

. anguage Is hierarchical

X X
X X X X
The talk X X X The talk X appealed to anybody
T dia not/\
| gave appeal to anybody | did not give

Generalization: not must “structurally precede” anybody

Examples adapted from Everaert et al. (7T/CS 2015)

. anguage Is hierarchical

X X
X X X X
The talk X X X The talk X appealed to anybody
T dia not/\
| gave appeal to anybody | did not give

Generalization: not must “structurally precede” anybody

- the psychological reality of structural sensitivty
IS not empirically controversial
- many different theories of the details of structure

- hypothesis: kids learn language easily because they
don't consider many “obvious” structurally insensitive
hypotheses

Examples adapted from Everaert et al. (7T/CS 2015)

Recurrent neural networks
A good model of language?

* Recurrent neural networks are incredibly powerful models
of sequences (e.g., of words)

* |n fact, RNNs are Turing complete!
(Siegelmann, 1995)

Recurrent neural networks
A good model of language?

* Recurrent neural networks are incredibly powerful models
of sequences (e.g., of words)

* |n fact, RNNs are Turing complete!
(Siegelmann, 1995)

e But do they make good generalizations from finite
samples of data”

 What inductive biases do they have?

 What assumptions about representations do models
that use them make?

Recurrent neural networks
Inductive bias

* Understanding the biases of neural networks is tricky

* We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

Recurrent neural networks
Inductive bias

* Understanding the biases of neural networks is tricky

* We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

« But, there is lots of evidence RNNs prefer sequential recency
e Evidence 1: Gradients become attenuated across time

* Analysis; experiments with synthetic datasets
(yes, LSTMs help but they have limits)

e Evidence 2: Training regimes like reversing sequences in seqg2seq learning

e Evidence 3: Modeling enhancements to use attention (direct connections back in
remote time)

Recurrent neural networks
Inductive bias

* Understanding the biases of neural networks is tricky

* We have enough trouble understanding the representations they learn in specific
cases, much less general cases!

« But, there is lots of evidence RNNs prefer sequential recency
e Evidence 1: Gradients become attenuated across time

* Analysis; experiments with synthetic datasets
(yes, LSTMs help but they have limits)

e Evidence 2: Training regimes like reversing sequences in seqg2seq learning

e Evidence 3: Modeling enhancements to use attention (direct connections back in
remote time)

« Chomsky (to crudely paraphrase 60 years of work):
sequential recency is not the right bias for effective learning of human language.

lopics

Recursive neural networks for sentence
representation

Recurrent neural network grammars and parsing

Word representations by looking inside words
(words have structure too!)

Analysis of neural networks with linguistic concepts

lopics

e Recursive neural networks for sentence
representation

Representing a sentence

Input sentence:

this film is hardly a treat

Task: Classity this sentence as having either positive
or negative sentiment.

Representing a sentence

Input sentence:

this film is hardly a treat

Task: Classity this sentence as having either positive
or negative sentiment.

Why might this sentence pose a problem for interpretation?

Representing a sentence

Bag of words:

Representing a sentence

Recurrent neural network

hy o hy | hyp hy | hspehg C:h6
X1 X9 X3 X4 X5 X6
this film is hardly a treat

HOW dO languages express
meaning’

* Principle of compositionality: the meaning of a complex
expression is determined by the meanings of its constituent
expressions and the rules that combine them.

e Syntax and parsing

o Syntax is the study of how words fit together to form
phrases and ultimately sentences

* \We can use syntactic parsing to decompose sentences
Into constituent expressions and rules that were used to
construct them out of more primitive expressions (and
ultimately individual words)

Syntax as Trees

S

|
I

)
8 / n

TTTT11

this film is hardly a treat

Syntax as Trees

Syntax as Trees

Representing a sentence

Recursive Neural Network

C X
/ X

/ |
LA
L Ll

Socher et al. (ICML 2011), et passim

Representing a sentence

Recursive Neural Netwo

h = tanh(W £; r] + b)

[

K

X

/

\

h = tanh(W|[€; r] + b)

X1 X2

X3 X4

Xf \X

NERRR

this film is hardly a treat

Socher et al. (ICML 2011), et passim

Representing a sentence

Recursive Neural Netwo

h = tanh(W £; r] + b)

[

K

X

h = tanh(W[£;r] + b)

/

\

h = tanh(W|[€; r] + b)

X1 X2

X3 X4

Xf \X

NERRR

this film is hardly a treat

Socher et al. (ICML 2011), et passim

Representing a sentence

Recursive Neural Netwo

h = tanh(W £; r] + b)

[

K

X

h = tanh(W[£;r] + b)

h = tanh(W[£;r] + b)

/

\

h = tanh(W|[€; r] + b)

X1 X2

X3 X4

Xf \X

NERRR

this film is hardly a treat

Socher et al. (ICML 2011), et passim

Representing a sentence

Recursive Neural Netwo

h = tanh(W £; r] + b)

[

K

\

clh = tanh(W|[€;r] + b)

h = tanh(W[£;r] + b)

X

h = tanh(W[£;r] + b)

\
/ h = tanh(W|[€; r] + b)

X1 X2

X3 X4

Xf \X

NERRR

this film is hardly a treat

Socher et al. (ICML 2011), et passim

Representing a sentence

Recursive Neural Network
S

NP///\NPNP
o A
BERRER

this film is hardly a treat

“Syntactic untying”

Representing a sentence

Recursive Neural Netwo

h = tanh(W™ " [€; 1] + b)

'K
S
—VP
NP
NF " NP
h = tanh(W" " [€; 1] + b)
Xf \X X X Xf \X

NERRR

this film is hardly a treat

“Syntactic untying”

Representing a sentence

Recursive Neural Netwo

h = tanh(W™ " [€; 1] + b)
NP

[

X1 X2

'k
S
VP
NP
h = tanh(W™ " [€;r] + b)
NP
h = tanh(W" " [€; 1] + b)

/A

NERRR

this film is hardly a treat

“Syntactic untying”

Representing a sentence

Recursive Neural Netwo

h = tanh(W™ " [€; 1] + b)
NP

[

K

\

S

X

VP
h = tanh(W""[£;r] + b)

NP
h = tanh(W™ " [€;r] + b)

/

NP
h = tanh(W" " [€; 1] + b)

X1 X2

X3 X4

Xf \X

NERRR

this film is hardly a treat

“Syntactic untying”

Representing a sentence

Recursive Neural Netwo

h = tanh(W™ " [€; 1] + b)
NP

[

K

S
°|h = tanh(W?[£; r] + b)

VP
h = tanh(W""[£;r] + b)
NP

h = tanh(W™ " [€;r] + b)

NP
h = tanh(W" " [€; 1] + b)

X1 X2

X3 X4

Xf \X

NERRR

this film is hardly a treat

“Syntactic untying”

Representing Sentences

Bag of words/n-grams
Convolutional neural network
Recurrent neural network
Recursive neural network

In all of these, we can train by backpropagating
through the “composition function”

Stanford Sentiment Treebank

O Ny @ very positive
,0\// \\ 5
\)/u\ _ Q///O\\\Q (®) positive
0 D) - 0
This ﬁlmJ,/ \\O @ neutral
- 0
TN negative
& T @ hCY © neg
o wt care o g @ very negative
about Q /\,\',«D\\
C (-\' ST// \;(i:\/‘\
Q ¢ m B
\(/ wit any of Q ol@/ \w
clcxerncqs ’ other kind intelligent humor

Socher et al. (2013, EMNLP)

Internal Supervision

co P2 = 8(a,p1)

©o p1=8(b,c)

©o ©O Xo)
. not very good..

a b C

Some Results

Bigram Naive

Bayes 83.1
RecNN
(RNTN form) Ho
h h = tanh (Vvec([€;r]| ® [£;r]) + W [€;r| + b)

[\ X

r Quter product

Some Results

“not good” “not terrible”

Bigram Naive

Bayes 83.1 19.0 27.3
RecNN
(RNTN form) 85.4 71.4 81.8
h h = tanh (Vvec([€;r]| ® [£;r]) + W [€;r| + b)

[\ X

r Quter product

Some Predictions

- O~
ol oS @/ >€\
g _© 7> OSRO ~
R Jog ~O ey ©
oger Dodger ~ : Roger Dodger ;Q\ :
P oW iS o !
one .~ ~ one C/ \/\G
Q? //Q\\ of N
oy = Q/ p

Cf\(?j\@) R d R

AN
) o i a/ © 0 N
variations 3) O/ variations ‘-
O/ j6) t'ns theme) this heme
most compelling leass compelling

Predictions by RNTN variant of RecNN.

Many Extensions

Various cell definitions, e.g., (matrix, vector) pairs, higher order tensors
Improved gradient dynamics using tree cells defined in terms of LSTM

updates with gating instead of RNN. Exercise: generalize the definition
of a sequential LSTM to the tree case. Check the paper.

n-ary children

‘Inside outside™ networks provide an analogue to bidirectional RNNs
(lecture from a few weeks ago)

Dependency syntax rather than “phrase structure”™ syntax

Applications to programming languages, visual scene analysis—
anywhere you can get trees, you can apply RecNNs

Recursive vSs. Recurrent

 Advantages

 Meaning decomposes roughly according to the syntax of a sentence (and we
have good tools for obtaining syntax trees for sentences) — better inductive

bias
« Shorter gradient paths on average (log,(n) in the best case)

* Internal supervision of the node representations (“auxiliary objectives”) is
sometimes available

 Disadvantages
 We need parse trees
e Trees tend to be right-branching—gradients still have a long way to go!

 More difficult to batch than RNNSs

lopics

* Recurrent neural network grammars and parsing

Where do trees come from?

An alternative to RNN LMs
Recurrent Neural Net Grammars

* (Generate symbols sequentially using an RNN

An alternative to RNN LMs
Recurrent Neural Net Grammars

* (Generate symbols sequentially using an RNN

 Add some control symbols to rewrite the history
occasionally

 Occasionally compress a sequence into a constituent
* RNN predicts next terminal/control symbol based on the

nistory of compressed elements and non-compressed
terminals

An alternative to RNN LMs
Recurrent Neural Net Grammars

* (Generate symbols sequentially using an RNN

 Add some control symbols to rewrite the history
occasionally

 Occasionally compress a sequence into a constituent
* RNN predicts next terminal/control symbol based on the

nistory of compressed elements and non-compressed
terminals

* This is a top-down, left-to-right generation of a
tree+sequence

Example derivation

' l
4
| ‘

.'. g
|
|
' Il \ '
' I (
%) AN
) - N . .
| : \. s 4 -
.. Y lo)
' ‘ 1
« ‘ . 8 U k'
W : i ‘ LY
: |‘ // i ’.' N ‘\ ‘\
e | ! [l ‘4. \]
J» : 3 11
1

The hungry cat meows loudly

stack | action probability

stack | action probability
NT(S) p(NT(S) | TOP)

stack | action probability
NT(S) p(NT(S) | TOP)
(S

stack | action probability
NT(S) p(NT(S) | TOP)
(S | NT(NP) p(NT(NP) | (S)

stack | action probability
NT(S) p(NT(S) | TOP)
(S | NT(NP) p(NT(NP) | (S)
(S (NP

stack | action probability
NT(S) p(NT(S) | TOP)
(S | NT(NP) p(NT(NP) | (S)
(S (NP | GEN(The) p(GEN(The) | (S, (NP)

stack

(S
(S (NP
(S (NP The

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

stack

(S
(S (NP
(S (NP The

action probability
NT(S) p(NT(S) | TOP)
NT(NP) p(NT(NP) | (S)
GEN(The) | p(GEN(The) | (S, (NP)
GEN(hungry) |)

GEN(hungry) | (S, (NP
The)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

action probability
NT(S) p(NT(S) | TOP)
NT(NP) p(NT(NP) | (S)
GEN(The) P(GEN(The) | (S, (NP)
GEN(hungry) | p(GEN(hungry) | (S, (NP,

The)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)

The)
p(GEN(cat) | ...)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)

The)
p(GEN(cat) | ...)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat

(S (NP The hungry cat)

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat

(S (NP The hungry cat)

Compress “The hungry cat”
INnto a single composite symbol

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat
(S (NP The hungry cat)

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat
(S (NP The hungry cat)

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE
NT(VP)

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

p(NT(VP) | (5,
(NP The hungry cat)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat
(S (NP The hungry cat)

(S (NP The hungry cat) (VP

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE
NT(VP)

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

p(NT(VP) | (5,
(NP The hungry cat)

stack

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat
(S (NP The hungry cat)

(S (NP The hungry cat) (VP

action
NT(S)
NT(NP)
GEN(The)

probability
p(NT(S) | TOP)
p(NT(NP) | (S)

p(GEN(The) | (S, (NP)

GEN(hungry) | p(GEN(hungry) | (S, (NP,

GEN(car)
REDUCE
NT(VP)
GEN(meows)

The)
p(GEN(cat) | ...)

p(REDUCE | ...)

p(NT(VP) | (5,
(NP The hungry cat)

stack | action probability
NT(S) p(NT(S) | TOP)
(S | NT(NP) p(NT(NP) | (S)
(S (NP | GEN(The) P(GEN(The) | (S, (NP)
(S (NP The | GEN(hungry) | p(GEN(hungry) | (S, (NP,
(S (NP The hungry | GEN(car) p(GEN(cat) | ...) The)
(S (NP The hungry cat | REDUCE p(REDUCE | ...)
(S (NP The hungry cat) @ NT(VP) p(NT(VP) | (S,
(NP The hungry cat)
(S (NP The hungry cat) (VP | GEN(meows)
(S (NP The hungry cat) (VP meows | REDUCE
(S (NP The hungry cat) (VP meows) | GEN(.)

(S (NP The hungry cat) (VP meows) . | REDUCE
(S (NP The hungry cat) (VP meows))

Some things you can (easily) prove

e Valid (tree, string) pairs are in bijection to valid sequences of
actions (specifically, the DFS, left-to-right traversal of the
trees)

e Every stack configuration perfectly encodes the complete
history of actions.

* Therefore, the probability decomposition is justified by the
chain rule, I.e.

p(w,y) — (CLCtZOTLS(aj y)) (prop -I)
plactions(HP ai | a<i) (chain rule)

— Hp a; | stack(a;)) (|OFOIO 2)

Modeling the next action

p(CL@' ‘ (S (NP The hungry cat) (VP meows)

Modeling the next action

p(CL@' ‘ (S (NP The hungry cat) (VP meows)
_—

1. unbounded depth

Modeling the next action

T T [
® ® o [o
@ = o (o
® ® o (o

p(CLi ‘ (S (NP The hungry cat) (VP meows)
_—

1. unbounded depth

1. Unbounded depth — recurrent neural nets

Modeling the next action

T T [
® ® o [o
@ = o (o
® ® o (o

p(a@- ‘ (S (NP The hungry cat) (VP meows)

1. Unbounded depth — recurrent neural nets

Modeling the next action

(NP The hungry cat)

2. arbitrarily complex trees

1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets

Syntactic composition

Need representation for: (NP The hungry cat)

Syntactic composition

Need representation for: (NP The hungry cat)

o
v
o

NP

What head type?___/

Syntactic composition

Need representation for: (NP The hungry cat)

9

y J
y, y
y y

NP| |(The

What head type?___/

Syntactic composition

Need representation for: (NP The hungry cat)

NP| |Thel|lhungry
What head type?___/

Syntactic composition

Need representation for: (NP The hungry cat)

HH?*?

J J

L A A
L A A

NP| |The||lhungry||cat

What head type?___/

Syntactic composition

Need representation for: (NP The hungry cat)

LA S S A 4

J

L A A
L A A

J J

k

NP| |The||lhungry||cat)
What head type?___/

Syntactic composition

Need representation for: (NP The hungry cat)

o J J J
o J o J
o _J 4 J

NP| |The||lhungry||cat

Syntactic composition

Need representation for: (NP The hungry cat)

. A A
L A A
k
L A A
L A A

NP| |The||lhungry||cat NP

Syntactic composition

Need representation for: (NP The hungry cat)

o0 0 00

DR

NP| |The||lhungry||cat NP

. A A
. A A

sl A A
. A A
. A A

Syntactic composition

Need representation for: (NP The hungry cat)

)

NP

13

il A A
L A A
L A A
L A A
il A A
L A A

NP| |The hungry cat

Syntactic composition
Recursion

Need representation for:
(NP The (ADJP very hungry) cat)

sl

NP| |The cat

il A A
L A A
L A A
L A A
gl A A
L A A

NP

Syntactic composition
Recursion

Need representation for:
(NP The (ADJP very hungry) cat)

zs.
/

NP| |The

~ OOE
00¢
00¢
< HDOHD
- | OOE€

cat

Modeling the next action

T T [
® ® o [o
@ = o (o
® ® o (o

p(CLi ‘ (S (NP The hungry cat) (VP meows)

1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets

Modeling the next action

T T [
® ® o [o
@ = o (o
® ® o (o

p(ai ‘ (S (NP The hungry cat) (VP meows) ~ REDUCE

1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets

Modeling the next action

p(a@- (S (NP The hungry cat) (VP meows) ~ REDUCE

p(a@'_|_1 (S (NP The hungry cat) (VP meows))

1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets

Modeling the next action

p(a@- (S (NP The hungry cat) (VP meows) ~ REDUCE

p(a@'_|_1 (S (NP The hungry cat) (VP meows))
3. limited updates
1. Unbounded depth — recurrent neural nets
2. Arbitrarily complex trees — recursive neural nets
3. Limited updates to state — stack RNNs

Stack RNNs
Operation

* Augment RNN with a stack pointer
* [wo constant-time operations
* Push - read input, add to top of stack
* Pop - move stack pointer back
* A summary of stack contents is obtained by

accessing the output of the RNN at location of the
stack pointer

Stack RNNs
Operation

|
/

0

1 U EN

Stack RNNs

Operation
|
/
}’1'0 }1’1
- POP

Stack RNNs
Operation

Stack RNNs
Operation

Stack RNNs
Operation

Stack RNNs
Operation

Stack RNNs
Operation

-1 1 PUSH

Stack RNNs
Operation

RNNGs
Inductive bias?

 What inductive biases do RNNGs exhibit?
e |f we accept the following two propositions
« RNNs have recency biases

e Syntactic composition learns to represent trees by their heads

 Then we can say that they have a bias for syntactic recency rather
than sequential recency

e Not a perfect model, but maybe a better model

“talk”
R

(S (NP The talk (SBAR I did not give)) (VP appealed (PP to ...

Parameter estimation

e Generative

e Jointly model sentence x and its tree y

e Trained using gold standard trees (here: from a tree bank) to minimize
Cross-entropy

« We call this joint distribution p(x,y)

To parse (find a tree for x): we need to compute

Y

X

alrg I1Max £
g Iax p(y | =)

p(z,y)
arg max
yeYV. pl(x)

arg max p(<a,
gyeymp(Y)

def. conditional prob.

denominator Is constant

Parameter estimation

 Generative
e Jointly model sentence x and its tree y

e Trained using gold standard trees (here: from a tree bank) to minimize
Cross-entropy

« We call this joint distribution p(x,y)
 Discriminative

e Given a sentence X, predict the sequence to of actions y necessary to
build its parse tree - the full sentence x is observable

* |Instead of GEN, use SHIFT

« We call this conditional distribution g(y | x)

To parse: simply use beam search to find the best sequence.

English PTB (Parsing)

Petrov and Klein (2007) Gen
Shindo et al (2012)

Single model Gen
Vinyals et al (2015) .

PTB only Disc
Shindo et al (2012) Gen
Ensemble

Vinyals et al (2015) Disc+SemiS
Semisupervised up
Discriminative -

PTB only Dlse
Generative Gen

PTB only

91.1

90.5

92.4

92.8

91.7

93.6

English PTB (Parsing)

Petrov and Klein (2007) Gen
Shindo et al (2012)

Single model Gen
Vinyals et al (2015) .

PTB only Disc
Shindo et al (2012) Gen
Ensemble

Vinyals et al (2015) Disc+SemiS
Semisupervised up
Discriminative -

PTB only Dlse
Generative Gen

PTB only

91.1

90.5

92.4

92.8

91.7

93.6

English PTB (Parsing)

Petrov and Klein (2007) Gen
Shindo et al (2012)

Single model Gen
Vinyals et al (2015) .

PTB only Disc
Shindo et al (2012) Gen
Ensemble

Vinyals et al (2015) Disc+SemiS
Semisupervised up
Discriminative -

PTB only Dlse
Generative Gen

PTB only

91.1

90.5

92.4

92.8

91.7

93.6

English Language Modeling

Perplexity

5-gram IKN

LSTM + Dropout

Generative (approx.)

p(x) =Y pz,y)

yEy:n

Transition-based parsing

» Build trees by pushing words (“shift”) onto a stack and
combing elements at the top of the stack into a
syntactic constituent (“reduce”)

* Given current stack and buffer of unprocessed
words, what action should the algorithm take?

 Widely used
 (Good accuracy

* O(n) runtime [much faster than other parsing algos]

Stack | Buffer Action

| saw her duck Rroort

Stack | Buffer Action

| saw her duck root | SHIFT

Stack | Buffer Action

| saw her duck root | SHIFT

| | saw her duck RooT

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Root

Stack | Buffer Action

| saw her duck root | SHIFT
| saw her duck RooT SHIFT

| saw @ her duck Rroot REDUCE-L

Stack | Buffer Action

| saw her duck root | SHIFT
| saw her duck RooT SHIFT

| saw @ her duck Rroot REDUCE-L

¥\
| saw

Stack | Buffer Action

| saw her duck root | SHIFT
| saw her duck RooT SHIFT
| saw @ her duck Rroot REDUCE-L

¥\
| saw | her duck Root

Stack | Buffer Action
| saw her duck root | SHIFT
| | saw her duck root | SHIFT
| saw @ her duck Rroort REDUCE-L

¥\
| saw @ her duck Root SHIFT

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroot REDUCE-L
¥\
| saw @ her duck Root SHIFT

¥ \
| saw her | duck RooT

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroot REDUCE-L
¥\
| saw @ her duck Root SHIFT

¥\
| saw her duck Root SHIFT

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroot REDUCE-L
¥\
| saw @ her duck Root SHIFT

¥\

| saw her duck Root SHIFT

¥\
| saw her duck | RooTt

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroot REDUCE-L
¥\
| saw @ her duck Rroort SHIFT

¥\

| saw her duck Root SHIFT

N\
| saw her duck | rRooT REDUCE-L

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroort REDUCE-L
I{gaw her duck Rroot SHIFT
f/s,\aw her | duck RooT SHIFT
Ifs\aw her duck | RooTt REDUCE-L
—

A N
| saw her duck | RooT

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroort REDUCE-L
I{gaw her duck Rroot SHIFT
Ifs\aw her | duck RooT SHIFT
Ifs\aw her duck | RooT REDUCE-L
—

| saw her duck | root REDUCE-R

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw @ her duck Rroort REDUCE-L
I{gaw her duck Rroot SHIFT
f/s,\aw her | duck RooT SHIFT
Ifs\aw her duck | RooTt REDUCE-L
—

| saw her duck | root REDUCE-R

KN\ — <
| saw her duck

Stack | Buffer Action

| saw her duck root | SHIFT

| saw her duck RooT SHIFT

| saw | her duck Rroort REDUCE-L

I{gaw her duck Rroot SHIFT

f/s,\aw her | duck RooT SHIFT
Ifs\aw her duck | RooTt REDUCE-L
“saw her duck | roor REDUCE-R

KN\ — <

| saw her duck @ RooT SHIFT
¥\ o <
| saw heAr/auck ROOT REDUCE-R

KN = e
| saw her duck Rroot

P+

S

AL
55

T amod
an [\ decision

overhasty

> —— — —
T amod T T T
an [\ decision was made ROOT

overhasty

T amod
an [\ decision

overhasty

R

— |e— |e—

T T T

was made ROOT

«— REDUCE-LEFT(amod)

<— SHIFT

Some Results

Accuracy

Feed forward

NN 93.1

Stack LSTM 01.8

Dyer et al. (2015, ACL)

lopics

* Word representations by looking inside words
(words have structure too!)

Word representation

ARBITRARINESS

Word representation

ARBITRARINESS

car-c+b = bgr

[]

Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b = bat

Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b = bat

car

Word representation

ARBITRARINESS
car-c+b = bgr cat-c+b = bat

car Auto voiture xe hoi
= Oko ayokele kolol sakyanan

Word representation

ARBITRARINESS
car-c+b = bgr cat-c+b = bat

car Auto voiture xe hoil
= Oko ayokele kolol sakyanan

Is it reasonable to compose characters into
“meanings”?

Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b = bat
R S . il

car Auto voiture xe hoi
= Oko ayokele kolol sakyanan

OPPORTUNITY

Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b= bat

R S . 4 il

car Auto voiture xe hoi

= Oko ayokele kolol sakyanan
OPPORTUNITY

cool | coooool | coooooooool £2

Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b= bat

R S . 4 il

car Auto voiture xe hoi

= Oko ayokele kolol sakyanan
OPPORTUNITY

cool | coooool | coooooooool £2
cat+s = cats

W

Word representation

ARBITRARINESS

car-c+b = bgr cat-c+b = bat

TR S . 4 il

car Auto voiture xe ho

= Oko ayokele kolol sakyanan
OPPORTUNITY

cool | coooool | coooooooool £2

cat+s = cats pat+s = batsv

(ﬁ 8. ".28 W

Words as structured objects

<
S

$l00000000000

%4

“2,
£5500000000000

00000000000

@0\@...........

oy

p

Qoow‘..........

69

Words as structured objects

00000000000
.

%

l
00000000000

© 700000000000

<
o
%

0000000000000

090000000000

,mww

69

Words as structured objects

Words as structured objects

...........S@(‘
$

Words as structured objects

D
0000y
&

1. Normal word vector

...........S@(‘
$

69

Words as structured objects

eats

0000
\ 4
0000

1. Normal word vector

...........S@(‘
$

69

Words as structured objects

eats

0000
\ 4
0000

1. Normal word vector
2. Morphological word vector

...........9@(‘
$

69

Words as structured objects

1. Normal word vector
2. Morphological word vector

' + D
....i{; 0000w
G —t
7))
\ 4
0000

...........9@(‘
$

69

Words as structured objects

U

M
0000y
G —
wn
\ 4
0009

1. Normal word vector
2. Morphological word vector

L+

....@
'+

o000

...........%x
$

69

Words as structured objects

5 eats
2 ®
- : <
O +SG +3P ®| 1. Normal word vector
: ‘ : : : 2. Morphological word vector
@ o o ®
< o o e
O
O
O

69

Words as structured objects

. eats
o <
O : ®
o O e
O +SG +3P ®| 1. Normal word vector
< ¢ © ® 2. Morphological word vector
O o @ |®
O I) ® 3. Character-based word vector
O ® O @
O
O
O

QOO

69

Words as structured objects

. eats
o <
O : ®
o O e
O +SG +3P ®| 1. Normal word vector
< ¢ © ® 2. Morphological word vector
O o @ |®
O I) ® 3. Character-based word vector
O ® O @
O
O
O

QOO
Q00

69

Words as structured objects

. eats
o <
O : ®
o O e
O +SG +3P ®| 1. Normal word vector
< ¢ © ® 2. Morphological word vector
O o @ |®
O I) ® 3. Character-based word vector
O ® O @
O
O
O

000
000
oo

69

Words as structured objects

. eats
o <
O : ®
o O e
O +SG +3P ®| 1. Normal word vector
< ¢ © ® 2. Morphological word vector
O o @ |®
O I) ® 3. Character-based word vector
O ® O @
O
O
O

Qoo
000

Qoo
000

69

Words as structured objects

. eats
o <
O : ®
o O e
O +SG +3P ®| 1. Normal word vector
< ¢ © ® 2. Morphological word vector
O o |@® @
O I) ® 3. Character-based word vector
O ® O @
O O
O » O

Qoo
000

Qoo
000

69

Generating new word forms

cats eat loudly </s>

ho

\4
900000
»

cats eat loudly

70

Generating new word forms

plwe | hi)

] Ut

71

Generating new word forms

(e | Fug) ,- -
plwt | he) * Normally we model p(w: | hit) directly.

] Ut

71

Generating new word forms

(e | Fug) ,- -
plwt | he) * Normally we model p(w: | hit) directly.

* Instead let’s model

plws |) = E plws | Ty, 1) plrne | ly)
UL

] Ut

71

Generating new word forms

(e | Fug) ,- -
plwt | he) * Normally we model p(w: | hit) directly.

* Instead let’s model

plws | Ty =y " plws | hyym) plr | hy)
.

hy where m loops over three

“generation modes”:
* words
* morphemes
« characters

71

Generating new word forms

« Normally we model p(w: | i) directly.
* Instead let’s model

plws | Ty =y " plws | hyym) plr | hy)
.

plwt | h) where m loops over three
“generation modes”:

* words

* morphemes

« characters

} I

71

Generating new word forms

« Normally we model p(w: | i) directly.
* Instead let’s model

1) (o |] Lt : — E ‘p (nn | } ""1‘? T \l j) (Tit] l,.t':l
.

where m loops over three
“generation modes”:

e words
* morphemes
e characters

} It

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

plwy | hy) = Z plws | Iy plre Ty
plmme | he) where m loops over three
e “generation modes”:
choice e words
* morphemes

e characters

} It

Generating new word forms

« Normally we model p(w: | i) directly.
* Instead let’s model

plrws | Iy) = E plws | Iy plre Ty

T

plwt hy, e — word) where m loops over three
ﬁ o “generation modes”:
choice ° WOrdS

* morphemes
e characters

} It

72

Generating new word forms

« Normally we model p(w: | i) directly.
* Instead let’s model
plws | hy) = Z plws | Iy plre Ty

.

where m loops over three

ﬁ o et “generation modes”:
choice Affixes ° WOI‘dS

* morphemes
e characters

h-'t

72

Generating new word forms

« Normally we model p(w: | i) directly.
* Instead let’s model

plrws | Iy) = E plws | Iy plre Ty

.

where m loops over three
e ot s “generation modes”:
choice Affixes °* WO I'dS

* morphemes
e characters

h-'t

72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

plrws | Iy) = Z plws | Iy plre Ty
m
where m loops over three

sss “generation modes”:

Mode Word Root +
choice Affixes e words

* morphemes
e characters

ht

72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

p(wg|he, n — morph) plwe | by = Z plws | Iy plre Ty
| m
where m loops over three
s “generation modes”:
choice Affixes e words
* morphemes
® « characters
ht :
®
o 72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

plrws | Iy) = E plees | Tygyrn) ploe Ty

m
. where m loops over three
{3 . ”».,
es — ot somerenof generation modes”:
choice Affixes characters ° Words

* morphemes
e characters

ht

72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

P (Wy |] Lt : — E P (W | / Ley TIL I P (Tre / l..tjl

m
- ceree where m loops over three

“ : ”.
Mode Word Root + Sequence of generathn mOdeS .
choice Affixes characters ° WOrdS

* morphemes
e characters

ht

72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

P (Wy |] Lt : — E P (W | / Ley TIL I P (Tre / l..tjl

.

- ceree where m loops over three

{3 : ”».,
Mode Word Root + Sequence of generathn mOdeS .
choice Affixes characters ° WOrdS

* morphemes
e characters

ht

72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

plwy | fiy) = E pla | fgy i) plme | Ry

-
- eogesl meses where m loops over three
‘ : ”.
Mode Word Root + Sequence of generat]on mOdeS .
choice Affixes characters ° Words

* morphemes
e characters

h-'t

72

Generating new word forms

« Normally we model p(w: | ht) directly.
* Instead let’s model

plrws | Iy) = Z plws | Iy plre Ty
m
where m loops over three
(IX] { : ”.
(e8] [sesses ot somerenof generation modes”:
choice Affixes characters ° Words

* morphemes
e characters

h-'t

72

Generating new word forms

« Normally we model p(w: | ht) directly.

| e Instead let’s model
p(wg hy, e — char)

plw | hy) = plwe | fgyr) plrme | Ry
plwe | he) =Y plws | Iy,) plon | hy)
A m
ssesy where m loops over three
@00 * X1 {3 - ”.
Mode Word Root + Sequence of generatlon mOdeS .
choice 4 Affixes characters e words

| <

2

h’t

* morphemes
e characters

72

Generating new word forms

Pt ,f 't) » Normally we model p(w: | k) directly.

0000 ...«g_.. 00000
j\ » Instead let’s model
plws | Iy = Z plws | Iy plre | Ty
.
wetew eeese where m loops over three
0000000000 p

€€ ° ”.
Mode Word Root + Sequence of generat]on mOd es .
choice 4 Affixes characters e WO rdS

* morphemes
e characters

72

Putting It all together

cats eat loudly </s>

: : :
388 ¢ @58 @ |@s@
2g8g & [ggEs 2888

cats eat loudly

L anguage modeling results

Turkish Finnish

2.7

2.03

1.35

0.68

PureC c M W MW PureC c o)) cw CMw

Lower is better.

Columns:
RNN predicts language as a sequences of characters
Compositional character model only
Character+morpheme model
Character+word embedding model
Character+morpheme+word embedding model

lopics

* Analysis of neural networks with linguistic concepts

What do Neural Nets Learn
about Linguistics?

What do Neural Nets Learn
about Linguistics?

The

. A A

key(s)

Linzen, Dupoux, and Goldberg (2017, TACL)

\
J '
|)

éﬁ%ﬂﬂ#ﬂﬂ

L A A

the

cabinet(s)| is/are

. A A

| |

1
J '
|)

| |
1
J v

here

| |
1
J v

J J J J

J J ' J J || \

J . | @ “J “J “J “J \J
START | |The| |key(s) to the| |cabinet(s)|is/are

here

What do Neural Nets Learn
about Linguistics?

The

. A A

J
J
_

ke)

START

Linzen, Dupoux, and Goldberg (2017, TACL)

. A A

The

\
J '
|)

éﬁ%ﬂﬂ#ﬂﬂ

. A A

| |
|
\ J

key(s)

subject T

the

cabinet(s)| is/are

. A A

L A A

L A A

| |

1
J '
|)

| |
1
J v

| |
|
\ J

here

‘
|
\ J

| |
1
J v

the

cabinet(s)

is/are

here

Experiment 1: Can a RNN
\eam syntax”

The

. A A

ke)

Linzen, Dupoux, and Goldberg (2017, TACL)

\
J '
|)

éﬁ#ﬂﬂ#ﬂﬂ

. A A

subject T

the

cabinet(s)| is/are

L A A

| |

| |
J)
|)

| |
| |
J '

here

STOP

| |
| |
J v

J J J Y

J ‘) 1 J \ J 1 \

J . |©@ “J \J '@ \J \J
START | |The| |key(s) to the| |cabinet(s)|is/are

J

here

Experiment 1: Can a RNN
learn syntax”

SG/PL
J
Y
F % é—é—é é
J Y J J
J J J J
J J J J
START | |(The| |key(s) to the| |cabinet(s)

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN

learn syntax”

* Thisis a great set up!

* Jo generate training data, we just need to be
able to tag present tense verbs in a corpus

* Authors used ~1.4M sentences from Wikipedia

|
{

‘0 analyze, we might want a bit more of
nformation about the sentences to know when

ne model gets it right and when it gets it wrong

Experiment 1 Results

50%
40%
30%
20%

Error rate

10%

0% ._.-.-0-0-0-0-0-0-0-0"""9

2 4 6 g 10 12 14
Distance (no intervening nouns)

Experiment 1 Results

20%
Last intervening noun
15% B None
s Plural
10% B Singular

Error rate

5%

0%

Plural subject Singular subject

Error rate

Experiment 1 Results

100% - keys cabinet - PL

Baseline

80% - (common
nouns)

60%

40%

---------- Majority class
20%

Number
prediction
The keys to the cabinet & PL

0%

0 1 2 3 4
Count of attractors

ExXperimental Variants

Training signal Evaluation Task

. {SINGULAR, -

The keys to the cabinet PLURAL! P(PL) > P(SG)"
. {SINGULAR, -

The keys to the cabinet is/are PLURAL) P(PL) > P(SG)"

{GRAMMATICAL, P(GRAMMATICAL) >
UNGRAMMATICAL} P(UNGRAMMATICAL)?

{are, is, cat, dog,
the, ...}

The keys to the cabinet are here

The keys to the cabinet P(are) > P(is)?

ExXperimental Variants

Training signal Evaluation Task

. {SINGULAR, -

The keys to the cabinet PLURAL! P(PL) > P(SG)"
. {SINGULAR, -

The keys to the cabinet is/are PLURAL) P(PL) > P(SG)"

{GRAMMATICAL, P(GRAMMATICAL) >
UNGRAMMATICAL} P(UNGRAMMATICAL)?

{are, is, cat, dog,

The keys to the cabinet are here

The keys to the cabinet P(are) > P(is)?

the, ...}

Error rate

100%

80%

60%

40%

20%

0%

0

More Results

Baseline (common nouns)

¥ Language modeling
- = - = = = Random guess

Majority class
Grammaticality
—2 Number prediction
Verb inflection

1 2 3 4
Count of attractors

summary

« RNN Language Models are not learning the correct generalizations
about syntax

* Open questions

* |f RNNs are trained jointly to predict “singular/plural” and the
next word, would they do better? [Auxiliary objective]

 Would RNNGs do a better job on this task?
o Other experimental variants
+ Is there a “simple” function f(h;) — {SG,PL}?

* |s there a single dimension corresponding to “number”?

Linguistics in DL

e WO benefits:

* Help us design better models based on
knowledge about nature

* Help us interrogate our models to see if they
behave like they should

* Any questions?

